Как называются ядерные клетки. Физики придумали способ создания атомов без ядра. Вопросы для повторения и задания

Как вы считаете, может ли клетка существовать без ядра? Ответ обоснуйте.

У прокариот кольцевая ДНК расположена непосредственно в цитоплазме и успешно выполняет свои функции. Однако строение и деятельность эукариотической клетки гораздо сложнее, чем прокариотической. В связи с этим эукариотам необходимо иметь значительно больше нуклеиновых кислот, которые удобнее локализовать в определенной зоне. Эту проблему решило появление ядерной оболочки и обособление клеточного ядра. Кроме того, ядерная оболочка защищает хроматин от химических и механических повреждений.

Может ли эукариотическая клетка существовать без ядра? В ядре хранится почти вся наследственная информация о структуре белков. Следовательно, без ядра клетка не может развиваться и гибнет. Тем не менее некоторые клетки многоклеточного организма (например, эритроциты человека) утрачивают ядро в ходе роста и специализации; к моменту потери ядра в них уже синтезирован весь необходимый набор белков. Скорость разрушения этих белков определяет срок жизни таких клеток (как правило, несколько недель).

Джонн Бриггс (John Briggs) и Дарко Димитровски (Darko Dimitrovski) из университета Фрайбурга (Universität Freiburg) обосновали и рассчитали придуманный ими метод создания атомов без ядра. С развивающимися ныне технологиями такой «фокус» будет доступен экспериментаторам во вполне обозримом будущем.

Атом без ядра — это набор электронных оболочек, сохраняющих свою «форму» так, словно бы они всё ещё удерживаются ядром.

Создать такое странное образование возможно, если воздействовать на какой-либо атом чрезвычайно коротким и при этом очень мощным импульсом лазера, говорят учёные.

Правда, этот экзотический атом без ядра будет жить ничтожно короткое мгновение, но всё же — он будет реально существовать.

Бриггс и Димитровски посчитали, как будет работать их метод. Итак: лазер с импульсом длительностью примерно 10 аттосекунд (1 аттосекунда равна 10 -18 с), вроде того что был использован в этом необычном опыте, но только чрезвычайно мощный (а именно — 10 18 ватт), воздействует на атом. Период орбитального движения электронов в атоме заметно больше, чем длительность такого импульса. Так, к примеру, у водорода электрон «обегает» вокруг ядра за 24 аттосекунды.

Если сила электрического поля в луче будет больше, чем сила связи электронов с ядром, – вся электронная оболочка будет оторвана от ядра и аккуратно смещена в сторону.

Ключ к успеху тут — быстротечность импульса и правильная его частота, ведь «сбивание» электронных оболочек (всех их уровней сразу, если речь идёт об атоме, куда более сложном, нежели водород) должно произойти за счёт действия всего лишь одного полупериода электромагнитной волны использованного в опыте излучения.

Второй полупериод этой волны послужит для торможения полного волнового пакета в новом месте его расположения — на некотором расстоянии от ядра. Тут имеется в виду волновой пакет всех электронов атома, разумеется.

Поскольку импульс лазера столь короток, за время своего смещения в пространстве электроны, образно говоря, не успеют ничего «предпринять». Их волновая функция почти не претерпит искажений, да и разбежаться в стороны от действия сил Кулона электроны не успеют, поясняют изобретатели метода.

Разумеется, такой «атом» через очень краткий миг распадётся, но если зафиксировать приборами все разлетевшиеся электроны, можно будет потом в компьютере восстановить облик первоначального волнового пакета, то есть того самого атома без ядра — самостоятельно существующего электронного облака, воспроизводящего форму оболочек исходного атома.

Удивительно, но, по расчётам Джона и Дарко, «снять» с минимальным «повреждением» разом все электронные оболочки можно не только с лёгких, но и с тяжёлых атомов, и более того — подобный «трюк» можно проделать даже с молекулами. Понятно, чтобы осуществить такой опыт, нужно ещё создать очень мощный аттосекундный лазер.

И, надо сказать, техника постепенно подступается к этой задаче. Ведь уже существующие установки демонстрируют потрясающие вещи. Например, познакомьтесь с лазерами: выдавшим недавно самый яркий свет во Вселенной, обошедшим некоторые капризы квантовой физики, мощным рентгеновским , который взорвал объект наблюдения; а также с историями о том, как сверхкороткие лазерные импульсы позволили отснять молекулы , создать чёрный металл и поставить рекорд скорости нагрева в 10 18 градусов в секунду, а ещё — аккуратно

Всем известно, что человек является эукариотом. Это значит, что все его клетки имеют органеллу, в которой заключена вся генетическая информация, - ядро. Однако существуют и исключения. Есть ли в организме человека безъядерные клетки и каково их значение для жизнедеятельности?

Безъядерные клетки человека

Их нельзя сравнивать с прокариотами, обладающими типичным строением. Что же это за безъядерные клетки? Ядра нет в клетках крови - эритроцитах. Вместо данной органеллы они содержат сложный химический комплекс веществ, позволяющий им выполнять важнейшие для организма функции. Кровяные пластинки - тромбоциты и лимфоциты - также безъядерные клетки. Ядра нет и в клетках, которые называют стволовыми. Все перечисленные структуры объединяет еще один признак. Поскольку в них отсутствует ядро, они не способны к размножению. Это значит, что безъядерные клетки, примеры которых были приведены, после выполнения своей функции гибнут, а новые образуются в специализированных органах.

Эритроциты

Именно они определяют цвет нашей крови. Безъядерные клетки крови эритроциты имеют необычную форму - двояковогнутого диска, которая значительно увеличивает их поверхность при относительно малых размерах. Зато количество их просто поражает: в 1 кв. мм крови их находится до 5 млн! В среднем эритроцит живет до четырех месяцев, после чего погибает и нейтрализуется в селезенке и печени. Новые клетки формируются каждую секунду в красном костном мозге.

Функции эритроцитов

Что же вместо ядра содержат эти безъядерные клетки? Называются эти вещества гем и глобин. Первое является железосодержащим. Оно не только окрашивает кровь в красный цвет, но и образует нестойкие соединения с кислородом и углекислым газом. Глобин представляет собой вещество белковой природы. В его крупную молекулу погружен гем, содержащий заряженный ион железа. По механизму действия эти клетки можно сравнить с маршрутным такси. В легких они присоединяют кислород. С током крови он разносится ко всем клеткам и высвобождается там. При участии кислорода происходит процесс окисления органических веществ с выделением определенного количества энергии, которую человек использует для осуществления жизнедеятельности. Освободившееся место тут же занимает углекислый газ, который движется в обратном направлении - в легкие, где выдыхается. Этот процесс является необходимым условием жизни. Если кислород не поступает к клеткам, происходит их постепенное отмирание. Это может быть опасным для жизни организма в целом.

Эритроциты выполняют еще одну важную функцию. На их мембранах находится белковый маркер, который называется резус-фактором. Этот показатель, как и группа крови, очень важен во время переливания крови, при беременности, донорстве и хирургических операциях. Его обязательно устанавливают, поскольку при несовместимости может произойти так называемый резус-конфликт. Он является защитной реакцией, но может привести к отторжению плода или органов.

Нерациональное питание, вредные привычки, загрязненный воздух могут вызвать разрушение эритроцитов. Вследствие этого возникает тяжелое заболевание, которое называется анемией, или малокровием. При этом человек чувствует головокружение, слабость, одышку, шум в ушах. Кислородная недостаточность негативно сказывается на физической и умственной деятельности человека. Особенно опасна она в период беременности. Если через пуповину к плоду поступает недостаточно кислорода, это может привести к серьезным нарушениям в его развитии.

Строение тромбоцитов

Безъядерные клетки тромбоциты еще называют кровяными пластинками. В неактивном состоянии они действительно имеют плоскую форму, напоминающую линзу. А вот при повреждении сосудов они набухают, округляются, образуют непостоянные выросты наружного слоя - псевдоподии. Тромбоциты образуются в красном костном мозге и живут недолго - до 10 дней, обезвреживаясь в селезенке.

Процесс образования тромба

Матрикс кровяных пластинок содержит фермент, который называется тромбопластином. При нарушении целостности сосудов он оказывается в плазме. Под его действием белок крови протромбин переходит в свою активную форму, в свою очередь, действуя на фибриноген. В результате это вещество переходит в нерастворимое состояние. Оно превращается в белок фибрин. Его нити тесно переплетаются и образуют тромб. Защитная реакция свертывания крови предотвращает кровопотери. Однако образование тромба внутри сосуда очень опасно. Это может привести к его разрыву и даже гибели организма. Нарушение процесса свертываемости называется гемофилией. Это наследственное заболевание характеризуется недостаточным количеством тромбоцитов и приводит к излишней потере крови.

Стволовые клетки

Эти безъядерные клетки называются стволовыми не зря. Они действительно являются основой для всех других. Их еще называют "генетически чистыми". Стволовые клетки находятся во всех тканях и органах, но больше всего их содержит костный мозг. Они способствуют восстановлению целостности там, где это необходимо. Стволовые превращаются в любые другие при их разрушении. Казалось бы, при наличии такого волшебного механизма человек должен жить вечно. Почему же этого не происходит? Все дело в том, что с возрастом интенсивность дифференциации стволовых клеток значительно уменьшается. Они уже неспособны восстановить разрушенные ткани. Но есть и еще одна опасность. Существует большая вероятность превращения стволовых клеток в раковые, что неминуемо приведет к гибели любой живой организм.

Безъядерные клетки: примеры и черты отличия

В природе безъядерные клетки встречаются достаточно часто. Например, прокариотическими являются сине-зеленые водоросли и бактерии. Но, в отличие от безъядерных клеток человека, они не гибнут после выполнения своей биологической роли. Дело в том, что прокариоты имеют генетический материал. Поэтому они способны к делению, которое происходит путем митоза. В результате образуются две генетические копии материнской клетки. прокариот представлена кольцевой молекулой ДНК, которая удваивается перед делением. Этот аналог ядра еще называют нуклеоидом. У растений безъядерными являются живые клетки -

Итак, безъядерные клетки человека неспособны к делению, поэтому они существуют непродолжительный промежуток времени до выполнения своей функции. После этого происходит их разрушение и внутриклеточное переваривание. К ним относятся форменные элементы (эритроциты), кровяные пластинки (тромбоциты) и стволовые клетки.

Ядро без цитоплазмы существовать не может. Удаление ядра влечет за собой нарушение обмена веществ, замедление, а затем и остановку роста клетки. Безъядерная клетка теряет способность восстанавливать свою целостность при повреждении, перестает делиться и, наконец, погибает.

Филогенетически ядро возникло не сразу. Об этом свидетельствует сравнительная морфология и индивидуальное развитие клеток. Так, живые существа, стоящие на очень низкой ступени развития, еще не имеют морфологически оформленного ядра, хотя рассеянное ядерное вещество ДНК у них есть (вирусы, бактериофаг, некоторые бактерии). При индивидуальном развитии клеток, которое начинается с образования новых клеток путем непрямого деления старых, ядро в дочерней клетке каждый раз оформляется заново, хотя основные структуры его - хромосомы и вещество ядрышка - преемственно передаются от материнских клеток к дочерним. Таким образом, и фило- и онтогенез свидетельствуют о том, что ядро возникло постепенно, в процессе эволюции. Чаще всего в клетке имеется одно ядро, но встречаются клетки с двумя и большим числом ядер. Известно, что воздействием холода в некоторых клетках можно увеличить число ядер (И. Герасимов). Увеличение количества ядер -одна из форм усиления функции.

Форма ядер чаще округлая, овальная или бобовидная (рис. 17). Некоторые ядра имеют вид кольца, прямых или несколько изогнутых палочек. В клетках крови (лейкоцитах) они имеют сложную сегментацию (см. цв. табл. IV, V). В большинстве случаев каждому виду клетки присуща своя, только ему свойственная форма ядра, и эта форма часто соответствует форме клетки. Так, округлая клетка имеет и ядро такой же формы, удлиненная клетка -с овальным ядром и т. д. Различные механические воздействия могут изменять форму ядра. Например, центросома вызывает образование вмятины и ядро приобретает подковообразную форму. Сокращение или растяжение клетки также отражается на форме ядра. Наконец, форма ядра некоторых клеток (лейкоцитов) зависит от возраста клетки и ее функционального состояния.

Величина ядер, по-видимому, зависит от количества цитоплазмы. Для каждого вида клетки характерно свое ядерно-плазменное отношение. Однако при усилении функции клетки размер ядра увеличивается. Это происходит, например, в клетках желез при усилении выработки ими секретов или гормонов, в нервных клетках при повышении их деятельности и т. д. Размер ядер может меняться под влиянием некоторых условий внешней среды. Так, при голодании белых мышей и кроликов и при кормлении их жиром размер ядер в клетках печени уменьшался, при скармливании белка, наоборот, размер и число ядер несколько увеличивались (Е. М. Ледяева).

Рис. 17. Различные формы ядер.

Располагаются ядра чаще всего в центре клетки, но в некоторых клетках они лежат эксцентрично. Ядро совершает колебательные или вращательные движения. В некоторых секреторных клетках (в эмалеобразователях) в период секреции ядро смещается к основанию клетки.

Химический состав ядра. Из органических соединений в состав ядра входят:

1) основные белки типа протаминов и гистонов;

2) негистонные белки (глобулины);

3) нуклеиновые кислоты и небольшое количество липоидов. Из неорганических веществ ядра наибольшую роль играет вода, а также минеральные соли кальция и магния. Особенно важное значение имеют нуклеиновые кислоты, причем ДНК клетки почти вся сосредоточена в ядре. В соматических (телесных) клетках данного организма количество ее относительно постоянно, но в зрелых половых клетках ДНК в 2 раза меньше. Количество РНК может значительно варьировать, причем в ядре обнаружены все три ее разновидности, то есть рибосомальная, информационная и транспортная. Соединение белка в ядре изменяется в процессе жизнедеятельности клетки. Часть белков ядра образует с нуклеиновыми кислотами нуклеопротеиды. В ядре имеются гликолитические и отсутствуют окислительные ферменты. Поэтому энергетические затраты обеспечиваются в ядре благодаря АТФ, возникающей на основе гликолиза, а не окисления, как в митохондриях. Нуклеиновых кислот особенно много в молодых, растущих клетках.

Физическое состояние. Ядро в целом, подобно твердым телам, обладает эластичностью и стойко сохраняет свою форму. С другой стороны, при проколе ядро растекается, подобно жидкости. Таким образом, ядро совмещает в себе свойства как жидких, так и плотных тел.

Строение ядра (рис. 18). В ядре неделящихся клеток различают кариоплазму, в которой находится одно или несколько ядрышек, и оболочку.

В клетке, подвергшейся действию некоторых факторов (например, обработке химическими веществами), и в мертвой клетке ядро имеет другой вид. В нем также отчетливо видна оболочка и ядрышко, В кариоплазме же возникает хроматиновая структура (chroma -цвет), названная так за свою способность легко воспринимать основные красители. Хроматин иногда имеет вид сети, отдельных зернышек или ниточек. Как уже сказано, хроматин состоит из комплекса ДНК с белком -дезоксирибонуклеопротеида и является формой существования хромосом. Более мелкие, чем хроматино-вые, но тоже базофильные глыбки считаются хромоцентрами хромосом. Прилегая к ядрышку, они образуют ядрышковый хроматин. Пространство между хроматиновыми структурами заполнено микроскопически бесструктурным веществом -ядерным соком (кариолимфой). Если клетка попадает в неблагоприятные, но несмертельные для нее условия, то возникшая в ядре хроматиновая структура после устранения вредно действующего фактора может вновь исчезать. В период непрямого деления клетки в ядре также обнаруживается структура, появление которой связано с преобразованием хромосом,

Рис, 18. Электронная микрофотография ядра клетки поджелудочной железы (X 16 000):

1 - ободочка ядра; 2 - пора; 3 - глыбки хроматина;

4 - ядрышко; 5 - зернистая цитоплазмэтическая сеть (по Фоссетту).

Оболочка ядра, как и плазмалемма, -физиологически весьма активна, но в отличие от оболочки клетки она неспособна восстанавливаться после повреждения. Электронно-микроскопические исследования показали, что оболочка состоит из двух мембран, между которыми находится перинуклеарное пространство» Удалось наблюдать, как это пространство иногда сообщается с полостями и цистернами цитоплазма-тической сети, а мембраны оболочки являются продолжением мембран этой сети. Так как каналы цитоплазматичес-кой сети могут сообщаться с межклеточной средой, то некоторые вещества способны из среды прямо поступать в перинуклеарное пространство клетки. На наружной мембране ядерной оболочки часто располагаются рибосомы. Таким образом, оболочка ядра является, по-видимому, частью мембранной системы клетки. Иногда оболочка ядра может складками вдаваться в цитоплазму или в кариоплазму, в силу чего увеличивается поверхность соприкосновения ядра и цитоплазмы. Контакт слщтепор, Обычно ядрышко почти правильной сферической формы. Реже встречаются ядрышки в виде скрученных лент и неправильных телец. Число ядрышек зависит от вида животного и типа клетки, а также может изменяться в зависимости от уровня обменных процессов в одной и той же клетке. При интенсификации этих процессов количество ядрышек возрастает, благодаря чему увеличивается поверхность активных контактов материала ядрышка с кариоплазмой. Встречаются ядра с 1-2 -3 и значительно большим числом ядрышек.

Размер ядрышка также связан с видовой, органной принадлежностью и с физическим состоянием клетки. Так, при усилении синтетической деятельности (образование секрета в железах, желточных зерен в ооцитах) ядрышко увеличивается.

Однако при условии торможения выхода РНК в цитоплазму ядрышко также может увеличиваться, хотя синтез белков в этом случае в цитоплазме ослаблен.

Образуются ядрышки в конце деления клетки и исчезают в начале его. Возникновение ядрышек связано с определенным участком хромосом -. организатором ядрышек. В ядре различают по две хромосомы с организатором ядрышек. Ядрышко имеет сложную субмикроскопическую структуру, его вещество состоит из нуклеолонемной и аморфной частей. Нуклеолоне-ма представлена гранулами и толстыми пучками (примерно 1200 А), состоящими из тонких фибриллей (40-50 А), в ячейках которых располагается более рыхлое аморфное вещество. Гранулы диаметром 100-200 А, состоят из рибонуклеопротеидов и называются ядрышковыми рибосомами. Функция ядрышка сводится к синтезу рибосомальной РНК, и, возможно, рибосом.

Около 70% РНК, содержащейся в цитоплазме, и 30 % в -в кариоплазме, образуются в ядрышке.

Кариолимфа (ядерный сок) в неделящейся клетке представляет собой жидкость белковой природы. В ней содержатся РНК и белок, преиму-ществено альбумины. В кариолимфе находятся хромосомы в сильно деспи-рализованном виде. У некоторых животных их обнаруживают даже при помощи светового микроскопа, но в большинстве случаев они не видны. Это,* по-видимому, объясняется весьма незначительной толщиной хромосом.

При различного рода воздействиях, как уже сказано, из кариолимфы может отмешиваться хроматин в виде неправильных глыбок и зерен. В кариолимфе разных клеток самцов (птицы) или самок (млекопитающие) около ядрышка или под оболочкой ядра находятся хроматиновые тельца определенной формы, которые названы половым хроматином. По этому признаку можно определять пол животного, когда вторичные половые признаки еще не выражены.

Функция ядра в целом определяется главным образом присутствием в нем ДНК.

1. Через ДНК прежде всего осуществляется генетическая (genesis - рождаю) функция ядра. Она заключается в том, что ДНК ядра хранят наследственную информацию, размножает ее благодаря способности ДНК воспроизводить самое себя, и при делении клетки эта информация, записанная в ДНК, равномерно по количеству и качеству распределяется по дочерним клеткам.

2. Ядру в период между делениями клетки принадлежит ведущая роль и в реализации наследственной информации, «записанной» в ДНК. Эта реализация происходит путем управления синтезом и обменом веществ. В синтезе белков ядро участвует путем образования на ДНК информационной, возможно, рибосомальной и транспортной РНК. На обмен веществ ядро оказывает влияние через ферменты. Так, известно, что в отсутствие ядра снижается активность одних ферментов протоплазмы и прекращается выработка составных частей других. 3. Две предыдущие функции тесно связаны с формообразующей ролью ядра. В опытах по пересадке ядра из клетки одного вида в клетку другого установлено, что пересаженное ядро направляет развитие в сторону своего вида.

4. Под контролем ядра осуществляются и другие процессы в клетке. Например, ядерные вещества способны стимулировать фосфорилирование, в результате которого образуется АТФ.

Биология изучает все живое на планете Земля, начиная с глобальной экосистемы Земли - биосферы - и заканчивая самыми мельчайшими живыми частицами - клетками. Раздел биологии о клетках называется "цитология". Она изучает все живые клетки, которые бывают ядерными и безъядерными.

Значение ядра для клетки

Как видно из названия, безъядерные клетки не имеют ядра. Они характерны для прокариотов, которые сами по себе являются такими клетками. Сторонники теории эволюции считают, что эукариотические клетки произошли от прокариотических. Основным отличием эукариотов в процессе развития жизни стало именно клеточное ядро. Дело в том, что в ядрах содержится вся наследственная информация - ДНК. Потому для эукариотических клеток отсутствие ядра обычно отклонение от нормы. Однако бывают исключения.

Прокариотические организмы

Безъядерными клетками являются прокариотические организмы. Прокариоты - древнейшие существа, состоящие из одной клетки или колонии клеток, к ним относятся бактерии и археи. Их клетки называют доядерными.

Главной особенностью биологии клеток прокариотов является, как уже было упомянуто, отсутствие ядра. По этой причине их наследственная информация хранится оригинальным способом - вместо эукариотических хромосом ДНК прокариота «упакована» в нуклеоид - кольцевую область в цитоплазме. Наряду с отсутствием оформленного ядра нет мембранных органоидов - митохондрий, аппарата Гольджи, пластид, эндоплазматической сети. Вместо них необходимые функции выполняются мезосомами. Рибосомы прокариотов гораздо меньше эукариотических по размеру, а их количество меньше.

Безъядерные клетки растений

У растений есть ткани, состоящие из одних безъядерных клеток. Например, луб или флоэма. Он находится под покровной тканью и представляет собой систему из разных тканей: основной, опорной и проводящей. Основным элементом луба, относящимся к проводящей ткани, являются ситовидные трубки. Состоят они из члеников - удлинённых безъядерных клеток с тонкими клеточными стенками, главным компонентом которых являются целлюлоза и пектиновые вещества. Ядро они теряют при созревании - оно отмирает, а цитоплазма превращается в тонкий слой, размещённый у стенки клетки. Жизнь этих безъядерных клеток связана с клетками-спутниками, имеющими ядро; они тесно связаны друг с другом и фактически составляют одно целое. Членики и спутники развиваются в общей меристематической клетке.

Клетки ситовидных трубок живые, но это единственное исключение; все остальные клетки без ядра у растений являются мертвыми. У эукариотических организмов (к которым относятся и растения) безъядерные клетки способны жить очень короткое время. Клетки ситовидных трубок недолговечны, после смерти образуют поверхностный слой растения - покровную ткань (например, кору дерева).

Безъядерные клетки человека и животных

В организме человека и млекопитающих животных также есть клетки без ядра - эритроциты и тромбоциты. Рассмотрим их подробнее.

Эритроциты

Иначе их называют красными кровяными тельцами. На этапе формирования молодые эритроциты содержат ядро, а вот взрослые клетки его не имеют.

Эритроциты обеспечивают насыщение кислородом органов и тканей. С помощью содержащегося в красных кровяных клетках пигмента гемоглобина клетки связывают молекулы кислорода и переносят их от лёгких в мозг и к другим жизненно важным органам. Также они участвуют в выводе из организма продукта газообмена - углекислого газа СО 2 , транспортируя его.

Эритроциты человека имеют размер всего 7-10 мкм и форму двояковогнутого диска. Благодаря маленьким размерам и эластичности, красные кровяные тельца легко проходят через капилляры, которые значительно меньше них по размеру. В результате отсутствия ядра и других клеточных органелл количество гемоглобина в клетке повышено, гемоглобин заполняет весь её внутренний объём.

Выработка эритроцитов проходит в костном мозге ребёр, черепа и позвоночника. У детей задействован также костный мозг костей ног и рук. Каждую минуту формируется более 2 миллионов эритроцитов, живущих около трёх месяцев. Интересный факт - красные клетки крови составляют примерно ¼ от всех клеток человека.

Тромбоциты

Раньше их называли еще кровяными пластинками. Это мелкие безъядерные клетки крови плоской формы, размер которых не превышает 2-4 мкм. Представляют собой фрагменты цитоплазмы, которые отделились от клеток костного мозга - мегакариоцитов.

Функцией тромбоцитов является формирование сгустка крови, который «затыкает» в сосудах поврежденные места, и обеспечение нормальной свертываемости крови. Также кровяные пластинки могут выделять соединения, способствующие росту клеток (так называемые факторы роста), поэтому они важны для заживления поврежденных тканей и способствуют их регенерации. Когда тромбоциты активизируются, то есть переходят в новое состояние, они принимают форму сферы с выростами (псевдоподиями), при помощи которых сцепляются друг с другом или сосудистой стенкой, закрывая тем самым её повреждение.

Отклонение количества тромбоцитов от нормы может приводить к различным заболеваниям. Так, уменьшение количества кровяных пластинок повышает риск кровотечений, а их увеличение приводит к тромбозу сосудов, то есть появлению сгустков крови, которые в свою очередь могут стать причиной инфарктов и инсультов, эмболии лёгочной артерии и закупорке сосудов в других органах.

Образуются тромбоциты в костном мозге и селезёнке. После формирования 1/3 из них разрушается, а оставшиеся циркулируют в кровотоке чуть дольше недели.

Корнеоциты

Некоторые клетки кожи человека также не содержат ядер. Из безъядерных клеток состоят два верхних слоя эпидермиса - роговой и блестящий (цикловидный). Оба состоят из одинаковых клеток - корнеоцитов, которые представляют собой бывшие клетки нижних слоев эпидермиса - кератиноциты. Эти клетки, образовавшись на границе наружного и среднего слоев кожи (дермы и эпидермиса), поднимаются по мере "взросления" все выше, в шиповатый, а затем и в зернистый слои эпидермиса. В кераноците накапливается вырабатываемый им белок кератин - важный компонент, который отвечает за прочность и упругость нашей кожи. В итоге клетка теряет ядро и практически все органеллы, поэтому большую её часть составляет белок кератин.

Получившиеся корнеоциты имеют плоскую форму. Плотно прилегая друг к другу, они образуют роговой слой кожи, служащий барьером для микроорганизмов и многих веществ - его чешуйки выполняют защитную функцию. Переходным от зернистого к роговому служит блестящий слой, также состоящий из потерявших ядра и органеллы кератиноцитов. По сути, корнеоциты - это мертвые клетки, так как никаких активных процессов в них не происходит.

Безъядерные клетки в трансплантологии

Для клонирования клеток нужных тканей в трансплантологии используются искусственно созданные безъядерные клетки. Так как генетическую информацию у эукариотических организмов хранит именно ядро, путём манипуляций с ним можно воздействовать на свойства клетки. Как бы фантастически это ни звучало, но можно заменить ядро и таким способом получить совершенно другую клетку. Для этого ядра удаляются или разрушаются различными способами - хирургическим, с помощью ультрафиолетового излучения или центрифугирования в сочетании с воздействием цитохалазинов. В полученную безъядерную клетку пересаживают новое ядро.

До сих пор учёные не пришли к общему мнению по поводу этичности клонирования, потому оно всё ещё находится под запретом.

Таким образом, фактически живые безъядерные клетки у высших (эукариотических) организмов почти не встречаются. Исключением являются клетки крови человека - эритроциты и тромбоциты, а также клетки флоэмы у растений. В остальных случаях безъядерные клетки нельзя назвать живыми, как, например, клетки верхних слоев эпидермиса или клетки, полученные искусственным путем для клонирования тканей в трансплантологии.