Демонстрация 1 1.11 способы очистки веществ. Методы очистки веществ. Предварительное удаление примесей

Методы очистки веществ различны и зависят от свойств веществ и их применения. В химической практике наиболее распространены следующие методы: фильтрование, перекристаллизация, дистилляция, возгонка, высаливание. Очистка газов обычно осуществляется поглощением газообразных примесей веществами, реагирующими с этими примесями. Чистые вещества обладают присущими им характерными физическими и химическими свойствами. Следовательно, степень чистоты вещества можно проверить как физическими, так и химическими методами. В первом случае определяют плотность, температуры плавления, кипения, замерзания и др. Химические методы проверки основаны на химических реакциях и представляют собой методы качественного анализа.

В соответствии со стандартом (ГОСТ) по степени чистоты реактивы делятся на:

а) химически чистые (х.ч.),

б) чистые для анализа (ч.д.а.),

в) чистые (ч.) и другие.

Для лабораторных работ по неорганической химии пригодны вещества с маркировкой х.ч. и ч.д.а.

      Перекристаллизация
Очистка твердых веществ методом перекристаллизации основана на различной растворимости вещества в данном растворителе в зависимости от температуры. Под растворимостью понимают содержание растворенного вещества в насыщенном растворе. Растворимость обычно выражается в . Зависимость растворимости веществ от температуры выражается кривыми растворимости. Если соль содержала малые количества других растворимых в воде веществ, насыщение относительно последних не будет достигнуто при понижении температуры, поэтому они не выпадут в осадок вместе с кристаллами очищаемой соли. Процесс перекристаллизации состоит из нескольких этапов: приготовления раствора, фильтрования горячего раствора, охлаждения, кристаллизации, отделении кристаллов от маточного раствора. Очистка твердых веществ перекристаллизацией основана на различной растворимости вещества в данном растворителе в зависимости от температуры. Под растворимостью понимают содержание растворенного вещества в насыщенном растворе. Растворимость обычно выражается в граммах растворенного вещества на 100 граммов растворителя, иногда на 100 г раствора. Зависимость растворимости веществ от температуры выражается кривыми растворимости. Если соль содержала малые количества других растворимых в воде веществ, насыщение относительно последних не будет достигнуто при понижении температуры, поэтому они не выпадут в осадок вместе с кристаллами очищаемой соли. Процесс перекристаллизации состоит из нескольких этапов: приготовления раствора, фильтрования горячего раствора, охлаждения, кристаллизации, отделения кристаллов от маточного раствора.
Чтобы перекристаллизовать вещество, его растворяют в дистиллированной воде или в подходящем органическом растворителе при определенной температуре. В горячий растворитель небольшими порциями вводят кристаллическое вещество до тех пор, пока оно перестанет растворяться, т.е. образуется насыщенный при данной температуре раствор. Горячий раствор отфильтровывают на воронке для горячего фильтрования. Фильтрат собирают в стакан, поставленный в кристаллизатор с холодной водой со льдом или с охлаждающей смесью. При охлаждении из отфильтрованного насыщенного раствора выпадают мелкие кристаллы, так как раствор при более низкой температуре становится пересыщенным. Выпавшие кристаллы отфильтровывают на воронке Бюхнера, затем переносят их на сложенный вдвое лист фильтровальной бумаги. Стеклянной палочкой или шпателем распределяют кристаллы ровным слоем, накрывают другим листом фильтровальной бумаги и отжимают кристаллы между листами фильтровальной бумаги. Операцию повторят несколько раз. Затем кристаллы переносят в бюкс. До постоянной массы вещество доводят в электрическом сушильном шкафу при температуре 100-105 . Температуру в шкафу до этого предела следует повышать постепенно. Для получения очень чистого вещества перекристаллизацию повторяют несколько раз.
      Возгонка (сублимация)
Процесс непосредственного превращения твердого вещества в пар без образования жидкости называют возгонкой. От перекристаллизации возгонка отличается более высоким выходом чистого продукта и происходит при более низкой температуре, чем температура плавления вещества. Ее применяют тогда, когда нельзя очистить вещество перекристаллизацией, так как оно разлагается при температуре плавления. Возгоняемое вещество нагревают. Достигнув температуры возгонки, твердое вещество без плавления переходит в пар, который конденсируется в кристаллы на поверхности охлажденных предметов. С помощью возгонки можно получить в чистом виде, например, бензойную кислоту, нафталин, хлорид аммония, йод и некоторые другие вещества, при условии, что примеси не возгоняются. Однако этот метод очистки веществ ограничен, так как немногие твердые вещества способны сублимироваться.
      Перегонка (дистилляция)
Перегонка – это процесс отделения жидкости от растворенных в ней твердых веществ или менее летучих жидкостей. Перегонка основана на превращении жидкости в пар с последующей конденсацией пара в жидкость. По сравнению с перекристаллизацией перегонка при меньших затратах времени дает, как правило, больший выход чистого продукта. Перегонкой пользуются тогда, когда перегоняемые вещества при нагревании не претерпевают каких-либо изменений или когда очищаемые жидкости имеют определенную разницу температур, но не слишком высокую температуру кипения. Различают три способа перегонки жидкостей:
    а) при атмосферном давлении (простая перегонка),
    б) при уменьшенном давлении (вакуум-перегонка),
    в) перегонка с водяным паром.
Простая перегонка применяется тогда, когда надо отделить целевой продукт от практически нелетучих примесей. Например, очистка воды от нелетучих солей. Для этого собирают традиционную установку, состоящую из перегонной колбы (колбы Вюрца), прямого холодильника и приемника. Перегонную колбу заполняют перегоняемой жидкостью не более чем на? ее объема, но и не менее чем на? объема колбы. Когда весь прибор собран, тщательно проверяют, хорошо ли подобраны пробки, правильно ли установлен термометр. Включают воду для охлаждения холодильника. Подставляют приемник для сбора перегоняемой жидкости и начинают нагревать раствор до кипения. Колбу нагревают на водяной (песчаной или масляной) бане, реже на пламени горелки через асбестовую сетку. Температуру паров отгоняемого вещества измеряют термометром, установленным на 1 см ниже отводной трубки колбы Вюрца. Для предотвращения внезапного вскипания перегоняемой жидкости и попадания ее в холодильник в колбу кладут длинные капиляры, запаянные с одного конца или небольшие кусочки фарфора (кипелки). Перегонку при низком давлении (вакуум-перегонку) применяют, если жидкость, подлежащая перегонке в обычных условиях, не выдерживает нагревания до температуры ее кипения. Установка для такой перегонки более сложная. Для отгонки веществ, нерастворимых в воде, используют перегонку с водяным паром.
      Высаливание

Высаливание заключается в том, что под действием значительных количеств насыщенного раствора сильного электролита высокомолекулярные природные соединения (белки, камеди, слизи, пектины) выпадают из вытяжек в осадок. Это происходит потому, что при добавлении в вытяжку раствора электролита образующиеся ионы электролита гидратируются, отнимая воду у молекул биополимера. Исчезает защитный гидратный слой молекул биополимера. Наблюдаются слипание частиц и осаждение биополимера. Высаливание довольно широко применяется для очистки белковых лекарственных препаратов, например пепсина. Термин «высаливание» получил название от процесса осаждения белков при добавлении к их растворам хлорида натрия.

Необходимо иметь в виду, что различные соли обладают разным высаливающим свойством, которое объясняется способностью анионов и катионов к гидратации. Высаливающая способность электролитов зависит в основном от анионов. Анионы по своей высаливающей силе располагаются в следующий лиотропный ряд >>>>>.

Для катионов имеется такой же лиотропный ряд: > > > > .

Наибольшей высаливающей активностью обладает однако обычно для этой цели используют хлорид натрия, который дешевле.

    Хлорид натрия

Хлорид натрия - химическое соединение NaCl, натриевая соль соляной кислоты, хлористый натрий.

Хлорид натрия известен в быту под названием поваренной соли, основным компонентом которой он является. Хлорид натрия в значительном количестве содержится в морской воде, создавая её солёный вкус. Встречается в природе в виде минерала галита (каменная соль).

Чистый хлорид натрия имеет вид бесцветных кристаллов. Но с различными примесями его цвет может принимать: голубой, фиолетовый, розовый, жёлтый или серый оттенок.

Умеренно растворяется в воде, растворимость мало зависит от температуры: коэффициент растворимости NaCl (в г на 100 г воды) равен 35,9 при 21 °C и 38,1 при 80 °C. Растворимость хлорида натрия существенно снижается в присутствии хлороводорода, гидроксида натрия, солей - хлоридов металлов. Растворяется в жидком аммиаке, вступает в реакции обмена.

      Хлорид натрия по названием «Поваренная соль»

Поваренная соль (хлорид натрия, NaCl; употребляются также названия «хлористый натрий», «столовая соль», «каменная соль», «пищевая соль» или просто «соль») - пищевой продукт. В молотом виде представляет собой мелкие кристаллы белого цвета. Поваренная соль природного происхождения практически всегда имеет примеси других минеральных солей, которые могут придавать ей оттенки разных цветов (как правило, серого). Производится в разных видах: очищенная и неочищенная (каменная соль), крупного и мелкого помола, чистая и йодированная, морская, и т. д. Cоль добывается промышленной очисткой добытого из залежей галита (каменной соли), располагающихся на месте высохших морей.

      В природе хлорид натрия встречается в виде минерала галита

Галит (греч. ??? - соль) - каменная соль, минерал подкласса хлоридов, кристаллическая форма хлорида натрия (NaCl). Сырьё, из которого изготавливается поваренная соль. Галиты можно найти в пластах осадочных пород среди прочих минералов - продуктов испарения воды - в пересыхающих лиманах, озёрах, морях. Осадочный слой имеет толщину до 350 метров и простирается на огромные территории. Например, в Америке и Канаде подземные залежи соли простираются от Аппалачских гор западнее Нью-Йорка через Онтарио до бассейна Мичигана.

    Очистка хлорида натрия методом высаливания.

При перекристаллизации веществ, растворимость которых мало изменяется с изменением температуры, применяют метод высаливания. К растворам таких веществ добавляют вещества, понижающие их растворимость.

    Экспериментальная часть
Приборы и реактивы
Приборы: технохимические весы, ступка, стакан, плитка, складчатый и обыкновенный фильтры, мензурка, стеклянная палочка, воронка, чашка Петри.
Реактивы: насыщенный раствор хлорида натрия, поваренная соль, дистиллированная вода, концентрированная соляна кислота (?= 1, 19 ) .
    Методика очистки
Приготовить насыщенный раствор хлорида натрия. Отвесить на технохимических весах 20 г поваренной соли, растереть ее в ступке и высыпать в стакан. Добавить 50 мл дистиллированной воды, поставить стакан на плитку. Нагреть раствор до кипения и профильтровать его через складчатый фильтр в чистый стакан. Отмерить мензуркой 25 мл концентрированной соляной кислоты?= 1, 19 . Стакан с теплым насыщенным раствором поваренной соли перенести в вытяжной шкаф и медленно, небольшими порциями добавлять в него соляную кислоту при непрерывном перемешивании стеклянной палочкой. После охлаждения раствора до комнатной температуры отфильтровать выпавшие кристаллы с помощью воронки и обычного фильтра, перенести их в чашку Петри и высушить.
    Проведение эксперимента
Первая параллель.
Отвесила на технохимических весах 20 г поваренной соли, пересыпала в стакан. Туда добавила 50 мл дистиллированной воды. Затем поставила стакан на плитку и довела содержимое до кипения. Соль отслоилась. Отфильтровала раствор и поместила его в вытяжной шкаф. Там, медленно, при перемешивании начала добавлять концентрированную соляную кислоту. При этом, растворимость электролита уменьшается при введении в раствор другого электролита с одноименным ионом. При введении ионов хлора Cl? в насыщенный раствор хлорида натрия NaCl(к) > + Cl? равновесие смещается влево, в результате чего выпадают кристаллы соли, не содержащие примесей.
Подождала, пока раствор остынет. Остывший раствор отфильтровала. Полученные кристаллы поместила в чашку Петри и оставила сушиться.
После того, как кристаллы высохли, я их взвесила: m=5,200 г.
и т.д.................

Некоторые твердые вещества при нагревании способны активно испаряться до достижения температур их плавления. Обратный переход паров в твердое состояние происходит сразу, минуя жидкую фазу. Такой процесс называется возгонкой или сублимацией и применяется для очистки веществ.

Возгонка, даже однократная, как правило, приводит к получению вполне чистого продукта и нередко заменяет несколько перекристаллизации. Она может быть использована как для окончательной очистки продукта, так и для предварительного отделения летучего соединения от нелетучих примесей. От перекристаллизации возгонка выгодно отличается также более высоким выходом чистого продукта (98-99%).

С другой стороны, возгонка - весьма длительный процесс, поэтому его обычно используют для очистки небольших количеств веществ. Область применения этого метода ограничена также тем, что способность многих твердых соединении сублимироваться столь ничтожна, что не может быть использована для препаративных целей.

Поскольку скорость испарения пропорциональна общей площади поверхности испарения, подвергаемое возгонке вещество необходимо как можно тоньше измельчать. Не следует также допускать плавления вещества при возгонке, поскольку это ведет к падению скорости процесса вследствие резкого уменьшения поверхности вещества.

Применение разрежения, так же как и при перегонке, снижает температуру, при которой вещества начинают возгоняться, поэтому под вакуумом удается сублимировать многие трудполетучие соединения.

При выборе приборов для возгонки следует отдавать предпочтение конструкциям, в которых расстояние между возгоняемым веществом и поверхностью конденсации минимально. С уменьшением этого расстояния возрастает скорость возгонки.


Рис. 81. Приборы (а, б) для возгонки с конденсацией паров на охадаемых поверхностях.



Рис. 82. Простейший прибор для возгонки: 1 - фарфоровая чашка с веществом; 2 - стеклянная воронка; 3- кружок фильтровальной бумаги с отверстиям; 4 - песчаная баня; 5 - вата.

Для сублимации небольших количеств легко возгоняющихся веществ может быть использован про- стсйшпй прибор, состоящий кз фарфоровой чашки, часового стекла и обычной химической воронки (рис. 80). Возгоняемое вещество нагревают на песчаной бане; возгон собирается на холодных стенках воронки, откуда его следует периодически счищать. Чтобы кристаллы возгона не падали обратно в чашку, вещество накрывают кружком фильтровальной бумаги или асбеста, проколов в нем несколько отверстий.


Рис. 82. Прибор для возгонки небольших количеств веществ в вакууме.

Во многих случаях предпочтительнее проводить конденсацию на охлаждаемую поверхность. Из всех предложенных для этой цели приборов наиболее простыми и в то же время обеспечивающими минимальное расстояние до поверхности конденсации являются приспособления, изображенные на рис. 81.

Обычно применяемый прибор для возгонки небольших количеств веществ в вакууме приведен на рис. 82. К его недостаткам относится необходимость периодического отключения вакуума и разборки прибора для соскабливания возгона.

В вакуум-сублиматоре, изображенном на рис. 83, возгон собирается в горизонтально расположенном холодильнике с достаточно широкой внутренней трубкой. Во избежание преждевременной конденсации продукта колбу с возгоняемым веществом по самое горло погружают в нагретую до нужной температуры жидкостную баню. Небольшой ток воздуха или инертного газа, подаваемый в" колбу через капилляр, способствует эффективному отводу паров от поверхности испарения, что резко повышает производительность прибора.

Для предотвращения уноса мельчайших частиц вещества с током газа в отводное горло колбы целесообразно впаять пористую стеклянную перегородку, однако при небольшом расходе газа эта мера не обязательна.



В зависимости от свойств очищаемого вещества и его количества можно изменять конструкцию отдельных частей прибора, не меняя принципа его действия. Так, различными могут быть форма колбы и способ ее обогрева. В качестве конденсатора для сублимации больших количеств вещества очень удобна охлаждаемая снаружи двухгорлая колба.

Возгонкой или сублимацией называют процесс, при котором кристаллическое вещество, нагретое ниже его температуры плавления, переходит в парообразное состояние (минуя жидкое), а затем оседает на холодной поверхности в виде кристаллов.

При атмосферном давлении при температурах ниже Т пл могут возгоняться только органические соединения с относительно высоким давлением паров. Их немного, подавляющее большинство соединений сублимируются только при пониженном давлении.

Возгонка - превосходный метод очистки веществ в тех случаях, когда загрязнения обладают иной летучестью, чем само соединение (соединения со сходной летучестью будут возгоняться вместе) и заменяет длительную и трудоемкую кристаллизацию. Возгонку легко провести даже с очень небольшими количествами вещества при минимальных потерях. Этот метод особенно удобен для очистки хинонов, многоядерных углеводородов, веществ, образующих сольваты или гидраты.

Простейшее устройство для возгонки при атмосферном давлении - низкий стакан без носика с тонким слоем предназначенного для сублимации вещества на дне. Стакан закрывают круглодонной колбой, через которую протекает вода. При высоких температурах возгонки вода в колбе может быть и не проточной.

Возгонку можно вести и в фарфоровой чашке, закрытой широким концом воронки, диаметр которой несколько меньше диаметра чашки (рис.3а).

Узкий конец воронки неплотно закрывают ватой. Для того, чтобы сублимат не попал обратно в чашку, ее закрывают листом фильтровальной бумаги с отверстиями в нем. Вещество, подвергаемое возгонке, должно быть мелко измельчено.

Уже небольшое перегревание может способствовать быстрому термическому разложению возгоняемого вещества.

Этой опасности можно избежать, проводя возгонку в вакууме. Для создания вакуума используют водоструйные, масляные насосы. Прибор для возгонки в вакууме изображен на рис.3б. Возгоняемое вещество помещают на дно пробирки, в которую вставлен пальчиковый холодильник. Расстояние между дном сублиматора и концом холодильника должно быть небольшим, но достаточным, чтобы возогнанное вещество не загрязнялось при разбрызгивании твердого вещества.

Рис. 3. Приспособление для возгонки (а), прибор для вакуум-возгонки (б): 1 - стакан со шлифом; 2- колпак с пальчиковым холодильником, 3 - трубка для ввода воды; 4 -патрубок для вывода воды; 5 -патрубок для присоединения к вакуум-насосу; 6 -возгоняемое вещество

Обычно оно составляет около 1 см. После вакуумирования сублиматор погружают в масляную баню и постепенно нагревают до тех пор пока на поверхности холодильника не образуется пленка возогнанного вещества. По завершении возгонки сначала отключают вакуум и вынимают холодильник. Возогнанное вещество соскребают на часовое стекло.



Занятие 8 ХИМИЧЕСКИЕ РЕАКТИВЫ И СПОСОБЫ ИХ ОЧИСТКИ

Значение темы

Проведение анализа в лаборатории невозможно без использования химических веществ, называемых реактивами. Количество различных веществ, используемых в анализе огромно. Знания свойств реактивов, правил их хранения и работы с ними необходимо в каждодневной работе медицинского лабораторного техника. В лаборатории может не оказаться реактива нужной степени чистоты. Кроме того, многие соли, содержащие кристаллизационную воду, при хранении теряют часть этой воды. Гигроскопичные вещества при хранении поглощают пары воды из воздуха. Такие реактивы, как спирт, бензол, эфир, содержат большее или меньшее количество воды. Во всех этих случаях реактивы очищают.

знать:

Классификацию химических реактивов;

Правила хранения и пользования химическими реактивами;

Методы очистки химических реактивов от примесей;

Устройство дистиллятора, правила работы.

уметь:

Проводить очистку химических реактивов методом возгонки, перекристаллизации;

Демонстрировать работу дистиллятора.

Химические реактивы (реагенты химические, или химреактивы) – это химические вещества, которые используют для анализа в исследовательских, лабораторных работах. В теории для проведения исследований было бы здорово использовать абсолютно чистые химреактивы (состоящие из одного вида частиц), но на практике чистым реагентом считает такое вещество, в котором присутствует наименьшее количество примесей, которого можно достичь при современном развитии науки и техники. Таким образом, все химические реактивы можно классифицировать по степени их чистоты.

КЛАССИФИКАЦИЯ РЕАКТИВОВ

    По степени чистоты

Обозна-чение

Характеристика

цвет полосы на этикетке

Технический

тех.

Содержание основного вещества от 70 %. Такие реактивы содержат много примесей и применяются для выполнения вспомогательных работ.


светло-коричневая

Очищенный

ч.

содержание основного вещества от 98%. Такие реактивы содержат всего 2 % примесей.

зеленая

Чистый для анализа

ч.д.а.

содержание основного вещества около 99 %, % зависит от сферы применения. С помощью таких реактивов проводятся точные аналитические исследования. Реактивы содержат 0,5-1 % примесей.

синяя


химически чистый


х.ч.

Содержание основного компонента составляет 99 % и выше. Они содержать не более 0,001-0,00001 % примесей.

красная

Для специальных целей:

К ним относятся вещества высокой чистоты. Содержание основного компонента составляет почти 100 %. Содержание примесей составляет 10 -5 -10 -10 %.

Спектрально чистые

с.п.ч.

Эталонной чистоты

э.ч.

Коричневая

Особо чистые

о.ч.

Желтая

    По употреблению

Общеупотребительные индикаторы

Красители для микроскопии,

Красители для хроматографии,

Реактивы для дезинфекции.

III. По свойствам

А) Гигроскопичные (влагочувствительные) реактивы. Поглощение влаги может Поглощение влаги может происходить при негерметичной упаковки реактива и может привести не только к увлажнению вещества, но и изменению его свойств.

Б) Светочувствительные реактивы. Некоторые вещества под действием света изменяются, вступая в реакции окисления, восстановления, изомеризации и т.п.

В) Пожароопасные реактивы. К ним относятся такие соединения, которые способны от кратковременного контакта с источником зажигания (искра, пламя, нить накала) или самопроизвольно воспламеняться.

Г) Ядовитые реактивы. Многие химические реактивы в большей или меньшей степени ядовиты. Особенно опасно систематическое попадание в организм человека в течение длительного времени соединений, вызывающих хронические отравления (соединения ртути, мышьяка, синильной кислоты, ментол и др.). Даже соединения, которые используются каждодневно в больших количествах, могут быть токсичными. Работать с такими веществами нужно только в вытяжном шкафу.

Примеры реактивов, относящихся к различным группам

Группы реактивов

Примеры реактивов

Условные обозначения

Гигроскопичные

реактивы

гидроксиды калия и натрия, хлорид аммония, ангидриды кислот и др.

Светочувствительные реактивы

раствор йода, пероксида водорода, соединения серебра.

Пожароопасные

реактивы

легко воспламеняющиеся жидкости (спирт, ацетон, бензол, эфиры и др.)

Ядовитые реактивы

соединения ртути, мышьяка, синильной кислоты, ментол и др.

Этикетки химических реактивов

Все химические вещества, находящиеся в лаборатории должны быть снабжены этикетками.

Без этикетки вещество хранить нельзя!

Согласно ГОСТ 3885-73, реактивы (препараты) должны быть упакованы в соответствующую потребительскую тару, герметически упакованы и снабжены стандартной этикеткой.

Для реактивов каждой классификации этикетка на таре должна быть определенного цвета или на ней должна быть цветная полоса.

При наличии у реактивов ядовитых, огнеопасных, взрывчатых свойств наклеивается отдельная этикетка с надписью определенного цвета.

Определенные вещества помечаются на этикетках рисунками:

Способы написания этикеток:

    Печатные этикетки

    Универсальные с клеящей лентой

    Временные (карандашом по стеклу)

    Масляными красками или лаком

    Парами фтороводородной кислоты – «вечные этикетки».

Правила хранения химических реактивов

В лабораторном помещении должны храниться небольшие запасы химических реактивов. Их держат в банках, склянках с пришлифованными стеклянными пробками или пластмассовыми крышками из полиэтилена, а наиболее летучие (хлороводородная кислота, раствор аммиака, бром) – на специальных полках в вытяжном шкафу. Общий запас одновременно хранящихся в каждом рабочем помещении лаборатории огнеопасных жидкостей не должен превышать суточные потребности. Склянки, в которых содержится более 50 мл. ЛВЖ, должны храниться в железных ящиках для горючего с плотно закрывающейся крышкой, со стенками и дном, выложенными асбестом. Светочувствительные реактивы хранят в темных склянках или банках, обернутых черной бумагой. Сильные яды должны храниться в опечатанных шкафах и сейфах. Хранить реактивы допускается лишь в специально оборудованных и хорошо вентилируемых помещениях, в строгом порядке. Не разрешается совместное хранение реактивов, способных взаимодействовать друг с другом, например, окислители и восстановители, кислоты и щелочи.

Обособленно следует хранить следующие группы реактивов:

Взрывчатые вещества,

Горючие и сжиженные газы,

Самовозгорающиеся или самовоспламеняющиеся вещества,

Яды.

Реактивы, не требующие специальных условий хранения, размещают на стеллажах. Неорганические вещества расставляют по общеизвестной классификации: простые вещества (металлы, неметаллы), оксиды, основания, соли. Соли лучше расставлять по катионам. Кислоты хранят отдельно. Органические вещества удобно расставлять по алфавиту. Нормы и правила хранения реактивов разрабатываются и утверждаются отдельно в каждой организации в зависимости от особенностей работы, наличия оборудования и складских помещений.

При хранении химических веществ не маловажен выбор пробки . О пробках и обращении с ними нужно помнить следующее:

    Выбор пробки для химической посуды осуществляют в зависимости от реактива. Выбирают пробку:

    Прежде надо подобрать пробку к сосуду, а уже потом помещать в него вещества. Пробки от разных сосудов нельзя путать; у каждого сосуда должна быть своя пробка, особенно это относится к стеклянным пробкам.

    Если сосуд с притертой пробкой пуст, то обязательно надо положить кусочек бумаги между горлышком и пробкой.

    Если корковой пробкой надо закрыть сосуд с кислотой или щелочью, то вначале пробку следует обработать.

    Хранить щелочи в сосудах с притертыми пробками нельзя, так как в этом случае пробку неизбежно "заест".

Правила пользования реактивами

1. Главное требование к реактивам - их чистота. Реактив нужно беречь от загрязнения.

2. Нельзя ссыпать и сливать реактив из посуды, в которой проводится реакция, обратно в посуду для хранения.

3. Нельзя путать пробки от посуды с разными реактивами, а также хранить реактивы без пробок. Необходимо строго учитывать, какой пробкой закрывать бутылки или склянки. Резиновыми пробками нельзя закрывать склянки с такими реактивами, как бензин, керосин, бензол, толуол и другие жидкие углеводороды, а также дихлорэтан, эфир и др., от паров которых резина набухает и размягчается.

4. Нельзя брать реактив руками.

5. Банки с летучими веществами должны открываться в момент непосредственного пользования ими.

6. Работы с ядовитыми и плохо пахнущими, воспламеняющимися веществами проводят в вытяжном шкафу.

7. При необходимости определения запаха осторожно направлять пары вещества рукой от сосуда к себе.

8. Ядовитые и едкие реактивы после проведения работы сливать в специальные склянки.

Правила работы с кислотами и щелочами

    Все концентрированные растворы должны храниться в специальных бутылях с притертыми пробками, поверх которых необходимо надевать притертый колпачок. Щелочи рекомендуется хранить в широкогорлых банках темно-оранжевого стекла, закрытых корковыми или полиэтиленовыми пробками и залитых слоем парафина.

    Кислоты и щелочи должны храниться на нижних полках шкафов отдельно от реактивов и красок.

    Посуда для хранения ядовитых веществ, щелочей и кислот должна иметь четкие надписи (чернилами по стеклу или другим способом).

    Биксы, банки, бутыли с летучими веществами необходимо открывать только в момент непосредственного пользования ими.

    5. Открывать сосуды с концентрированными кислотами и щелочами и летучими веществами и готовить растворы из них разрешается только в вытяжном шкафу с включенной принудительной вентиляцией.

    Щелочи следует брать из банки шпателем.

    Бутыли с кислотами, щелочами и другими едкими веществами следует переносить вдвоем в специальных ящиках или корзинах или перевозить на специальной тележке.

    При разбавлении крепких кислот следует кислоту наливать в воду, а не наоборот.

    При работе с кислотами, щелочами запрещается насасывать жидкость в пипетку ртом. Для набора жидкости следует использовать резиновые груши с трубками.

    Растворы для нейтрализации концентрированных кислот и щелочей должны находиться на стеллаже (полке) в течение всего рабочего дня.

    Посуду, содержащую растворы едких веществ, во избежание ожогов рук следует мыть в резиновых перчатках.

Техника безопасности при работе с химическими реактивами

  1. Опыты с ядовитыми и плохопахнущими веществами проводят в вытяжном шкафу.

    Для определения запаха газа или жидкости осторожно вдыхают воздух, слегка направляя испарения рукой от сосуда к себе.

    Пр наливании реактивов не наклоняться над сосудом во избежание попадания брызг на лицо и одежду.

    Все опыты с воспламеняющимися веществами проводят в вытяжном шкафу.

МЕТОДЫ ОЧИСТКИ ХИМИЧЕСКИХ РЕАКТИВОВ

Если в лаборатории отсутствует химический реактив определенной степени чистоты, его приходится дополнительно очищать. Самыми распространенными методами очистки являются:

фильтрование,

центрифугирование,

перекристаллизация,

перегонка (дистилляция),

возгонка (сублимация),

абсолютирование (высушивание).

Очистка методом декантации

Декантация – это отстаивание твердых частиц, содержащихся в жидкости, под воздействием силы тяжести. После декантации осветленная жидкость отделяется от осадка твёрдых частиц; при этом происходит очистка от примесей. Достоинство метода – его простота, а недостаток – замедленное отстаивание мелких частиц. Значительно быстрее происходит разделение смеси жидких и твердых частиц путем центрифугирования.

Очистка центрифугированием

Центрифугирование основано на использовании центробежной силы, возникающей при быстром вращении. В обычных лабораторных центрифугах скорость вращения составляет около 1000 оборотов в минуту, а в специальных (ультрацентрифугах) – до 6000 об/мин. Искусственная сила тяжести в центрифугах превышает земное притяжение в де-сятки-сотнитысяч раз, вследствие чего отстаивание твёрдых частиц происходит за несколько минут.

Очистка фильтворанием

Фильтрование заключается в пропускании суспензии через пористую перегородку – фильтр, задерживающий твердые частицы. Фильтром может служить специальная бумага, ткань, пористая керамика, пористое стекло, слой песка и другие пористые материалы. При обычных условиях фильтрование идет медленно. Для ускорения его проводят под вакуумом: в приемнике для жидкости с помощью насоса создают разрежение, вследствие чего на жидкость над фильтром начинает действовать атмосферное давление, и чем больше разность давлений (атмосферного и в приемнике), тем быстрее идет фильтрование.

Очистка методом перекристаллизации

Перекристаллизация применяется для очистки различных растворимых солей и многих твердых органических веществ. Перекристаллизация – один из наиболее распространенных методов очистки и разделения кристаллических веществ. Этот метод основан на различной растворимости вещества в холодном и горячем растворителе и на различной растворимости компонентов смеси в одном и том же растворителе.

Процесс перекристаллизации включает в себя несколько стадий:

1. Выбор растворителя. Выбор проводится опытным путем. Растворитель должен отвечать следующим требованиям:

1) не взаимодействовать с веществом,

2) не растворять вещество при комнатной температуре и хорошо растворять при нагревании,

3) при охлаждении горячего раствора должны выпадать кристаллы,

4) хорошо растворять примеси при комнатной температуре или не растворять их при кипячении,

5) температура кипения растворителя должна быть ниже температуры плавления вещества на 10-15ºС,

6) растворитель должен легко удаляться с поверхности кристаллов при промывании и сушке.

2. Приготовление насыщенного при температуре кипения растворителя раствора .

3. Фильтрование горячего раствора через складчатый фильтр для избавления от механических примесей.

4. Охлаждение раствора, вызывающее кристаллизацию . Охлаждение ведут с такой скоростью, чтобы выпадали кристаллы средних размеров. Обычно раствор оставляют стоять при комнатной температуре 20-30 минут, а затем помещают в ледяную баню. Если кристаллы не выпадают, то можно поместить в раствор кристаллик данного вещества («затравку») или потереть стеклянной палочкой о внутреннюю стенку стакана с раствором.

5. Отделение кристаллов от маточного раствора (фильтрование при пониженном давлении).

6. Промывание кристаллов холодным растворителем . Если при комнатной температуре вещество практически не растворимо, то кристаллы можно промывать растворителем комнатной температуры.

7. Сушка кристаллов . Сушат кристаллы обычно на воздухе или в вакуумном кристаллизаторе.

Установки для проведения всех стадий перекристаллизации изображены на рисунке № 4

1- Установка для приготовления насыщенного раствора (а – круглодонная колба, б – обратный холодильник, в – плитка)

2- Установка для горячего фильтрования (а – стакан, б – химическая воронка, в – складчатый фильтр)

3- Установка для фильтрования при пониженном давлении (а – фильтр Шотта, б – колба Бунзена)

Очистка методом перегонки или дистилляции

Перегонка или дистилляция - один из важнейших методов очистки жидкостей. При перегонке жидкость путем нагревания переводят в парообразное состояние, затем снова конденсируют, т. е. превращают в жидкость. При этом все твердые примеси и более высококипящие жидкие примеси остаются в колбе, а более низкокипящие примеси отгоняются раньше основной жидкости. Перегонкой очищают воду и другие жидкости. В колбу Вюрца (1) вставляют воронку с длинной трубкой и аккуратно наливают жидкость, подлежащую перегонке, бросают несколько капилляров с одним запаянным концом (запаянный конец должен находиться над жидкостью), это необходимо для равномерного кипения. Закрывают горло колбы пробкой с термометром (2). После этого подставляют приемник для дистиллята (5) и начинают нагревать.

При перегонке необходимо внимательно следить. Чтобы жидкость кипела равномерно и не бурлила. Перегонка не должна проходить слишком быстро. Как только жидкость закипит, внимательно следят за показаниями термометра. Первая небольшая порция дистиллята - это примеси. Когда показания термометра будут соответствовать температуре кипения перегоняемого вещества подставляют другой приемник, куда собирают перегоняемое вещество. Перегонку заканчивают тогда, когда в колбе Вюрца остается небольшое количество жидкости. Перегонять досуха не разрешается.

Большое значение в лаборатории придают перегонке воды, так как все растворы готовят только на дистиллированной воде. Ее расходуют в больших количествах и для других целей. Для получения дистиллированной воды в лабораториях применяют дистилляторы.

Очистка методом возгонки.

Некоторые твердые вещества, например йод, обладают способностью при нагревании не плавясь переходить в твердое состояние. Это явление называется сублимацией или возгонкой. Возгонка применяется для очистки веществ от нелетучих примесей. Этим методом можно очистить йод, хлорид аммония, серу и др. Для очистки небольших количеств вещества путем возгонки пользуются двумя часовыми стеклами одинаковой величины, пришлифованными друг к другу. На нижнее стекло помещают возгоняемое вещество, а между стеклами зажимают продырявленный в нескольких местах кружок фильтровальной бумаги, назначение которого - препятствовать падению образующихся кристаллов на нижнее нагретое стекло. Нижнее стекло подогревают на песчаной бане или очень осторожно, маленьким пламенем, на асбестовой сетке; верхнее стекло охлаждают кусочком влажной фильтровальной бумаги.

Возгонку больших количеств вещества производят в нагреваемом на масляной или воздушной бане стакане. В стакан опускают охлаждаемую изнутри проточной водой колбу, на поверхности которой оседают кристаллы возгоняемого вещества.

Обезвоживание органических реактивов.

При работе в лаборатории часто приходится очищать различные растворители (спирт, эфир, бензол и др.). Все эти реактивы содержат воду в том или ином количестве, присутствие которой может мешать работе. Поэтому эти реактивы, прежде чем перегонять, высушивают. Очищенные таким образом жидкости называются абсолютными. Поскольку органические реактивы обладают разными свойствами, способы их высушивания различны.

Абсолютирование спирта.

Для высушивания спирта в круглодонную колбу помещают обезвоженный сульфат меди CuSO4 и наливают спирт. Колбу подключают к обратному холодильнику, который закрывают пробкой с хлоркальциевой трубкой. В хлоркальциевую трубку помещают прокаленный хлорид кальция для поглощения паров воды из воздуха. Прибор устанавливают на водяной бане и кипятят в течение 6-8 часов. По окончании кипячения обратный холодильник заменяют холодильником Либиха и спирт перегоняют в чистую колбу. Прибор во время перегонки тщательно защищают от попадания влаги воздуха.

Абсолютирование бензола.

В бензол помещают прокаленный хлорид кальция, закупоривают и дают постоять в течение суток. Отфильтровывают и добавляют мелко нарезанный, хорошо очищенный от керосина и оксидной плѐнки металлический натрий. Собирают прибор с обратным холодильником и кипятят в течение 3-4 часов на песочной бане. После этого бензол перегоняют над натрием, тщательно защищая его от попадания влаги воздуха. Категорически запрещается нагревать бензол с металлическим натрием на водяной бане или газовой горелке. Абсолютирование эфира. Эфир, хранившийся долгое время, может содержать примеси пероксида диоксэтила. Поэтому в первую очередь эфир энергично взбалтывают в делительной воронке с концентрированным раствором гидроксида натрия или калия. Отделѐнный от щелочи эфир взбалтывают в делительной воронке с равной порцией воды и отделяют от воды. После промывания эфира водой к нему добавляют прокалѐнный хлорид кальция и дают постоять в течение суток. Затем эфир отфильтровывают, добавляют мелко нарезанный металлический натрий, кипятят с обратным холодильником, как при обезвоживании бензола, и перегоняют, нагревая на песочной бане.

Вопросы для самоподготовки:

1. На какие группы делят химические реактивы по их свойствам? Приведите примеры.

2. Особенности хранения различных групп химических реактивов?

3. Назовите основные правила пользования химическими реактивами.

4. Как следует подбирать пробки для хранения разных химических реактивов?

5. Что означают условные значки на этикетках химических реактивов?

6. Методы очистки химических реактивов.

Самостоятельная работа:

Подготовить конспект на тему «Виды дистилляции. Условия проведения»

Тест «Химические реактивы. Методы очистки.»

1. Марка реактива, в котором содержание примесей не превышает 0,5-1 %

а) ч. б) х.ч. в) ч.д.а. г) техн.

2. Гидроксид натрия, гидроксид калия, оксид кальция относятся к группе веществ

а) гигроскопичные б) светочувствительные в) пожароопасные г) ядовитые

3. Свойства соединений ртути, мышьяка, синильной кислоты, метанола

а) гидроскопичные б) светочувствительные в) пожароопасные г) ядовитые

4. Ядовитые вещества хранят

а) в вытяжном шкафу б) в опечатанном шкафу или сейфе в) в железном ящике вместе с ЛВЖ г) на стеллажах в лабораторном шкафу

5. Метод очистки иодида калия от кристаллов йода

а) перегонка б) возгонка в) дистилляция г) перекристаллизация

6. Метод очистки нитрита натрия от растворимых химических примесей

а) перекристаллизация б) возгонка в) фильтрование г) перегонка

7.Метод очистки для получения дистиллированной воды

а) перегонка б) возгонка в) перекристаллизация г) фильтрование

8.Колба, используемая для перегонки, дистилляции жидкостей

а) коническая б) Вюрца в) круглодонная г) мерная д) плоскодонная

9. Метод очистки твердых реактивов

а) перекристаллизация б) фильтрование в) дистилляция г) центрифугирование д) осаждение

10. Метод очистки жидких реактивов

а) перекристаллизацией б) возгонкой в) перегонкой г) центрифугированием д) осаждением

Ситуационные задачи

1. В ходе генеральной уборки лаборант случайно просыпал реактив иодида калия и йод. Составьте методику очистки иодида калия, содержащего механические примеси и кристаллы йода.

2. Составьте методику очистки натрия хлорида, содержащего механические примеси и примесь натрия сульфата.

3. В лабораторию поступил реактив гидроксида калия (техн.). Для лабораторных исследований необходимо очистить реактив. Составьте методику очистки КОН, который содержит механические примеси.

4. Составьте методику очистки натрия нитрата, содержащего механические и химические примеси.

Эталоны ответов на задачи

1. Сначала из смеси выделяют кристаллы йода методом возгонки. Реактив йодида калия и механические примеси растворяют в воде (готовят насыщенный раствор), отфильтровывают механические примеси и выпаривают кристаллы иодида калия.

2. Смесь хлорида натрия, натрия сульфата и механические примеси растворяют в воде. Для этого готовят горячий насыщенный раствор хлорида натрия с примесями, отфильтровывают и остужают.

3. Для очистки реактива гидроксида калия от механических примесей применяют фильтрование. Для этого смесь растворяют в воде, отфильтровывают и затем кристаллы выпаривают.

4. Смесь, содержащую механические и химические примеси растворяют в воде. Для этого готовят горячий насыщенный раствор, отфильтровывают и затем остужают.

Для проведения анализа вещества его сначала надо выделить, т.е. очистить, т.к. свойства вещества зависят от его чистоты. При выделении вещества из смеси веществ часто используют их различную растворимость в воде или органических растворителях.

Перекристаллизация – очистка твердых веществ, основанная на увеличении растворимости твердых веществ при повышении температуры в данном растворителе. Вещество растворяют в дистиллированной воде или подходящем органическом растворителе при определенной повышенной температуре. В горячий растворитель небольшими порциями вводят кристаллическое вещество до тех пор, пока оно перестанет растворяться, т.е. образуется насыщенный при данной температуре раствор. Горячий раствор отфильтровывают на воронке для горячего фильтрования через бумажный фильтр или, если растворитель агрессивная жидкость через фильтр Шотта (воронки с впаянной пористой стеклянной пластинкой). При этом раствор освобохдается от взвешенных мелких твердых частиц.

Фильтрат собирают в стакан, поставленный в кристаллизатор с холодной водой со льдом или с охлаждающей смесью. При охлаждении из отфильтрованного насыщенного раствора выпадают мелкие кристаллы растворенного вещества, т.к. раствор при более низкой температуре становится пересыщенным. Выпавшие кристаллы отфильтровывают на воронке Бюхнера. Для ускорения фильтрования и более полного освобождения осадка от раствора используют фильтрование под вакуумом. Для этой цели собирают прибор для фильтрования под вакуумом (рис. 15.1). Он состоит из колбы Бунзена (1), фарфоровой воронки Бюхнера (2), предохранительной склянки (4) и водоструйного вакуум-насоса(10). При этом в фильтрат уходят растворимые примеси, которые не кристаллизуются вместе с основным веществом, т.к. раствор не был пересыщен относительно примесей.

Рис. 15.1. Установка для фильтрования под вакуумом. 1 – колба Бунзена, 2 – воронка Бюхнера, 3 – пробка резиновая с отверстием, 4 – колба, 5 – кран соединительный, 6 – труба стеклянная газоотводная, 7 – пробка резиновая с тремя отверстиями, 8, 11 – шланг резиновый, 9 – шланг ПВХ, 10 – насос водоструйный

Отфильтрованные кристаллы вместе с фильтром из воронки Бюхнера переносят на сложенный вдвое лист фильтровальной бумаги и отжимают между листами фильтровальной бумаги. Операцию повторяю несколько раз, затем кристаллы переносят в бюкс. До постоянной массы вещество доводят в электрическом сушильном шкафу при температуре 100–105°С.

Возгонка – метод применяется для очистки веществ, способных при нагревании переходить из твердого состояния в газообразное, минуя жидкое состояние. Далее пары очищаемого вещества конденсируются, а примеси, не способные возгоняться, отделяются. Легко возгоняются такие вещества, как кристаллический иод, хлорид аммония (нашатырь), нафталин. Однако этот метод очистки веществ ограничен, т.к. немногие твердые вещества способны сублимироваться.

Разделение двух несмешивающихся жидкостей, имеющих различную плотность и не образующих устойчивых эмульсий, можно осуществить с помощью делительной воронки (рис. 15.2). Так можно разделить, например, смесь бензола и воды. Слой бензола (плотность r = 0,879 г/см 3) располагается над слоем воды, которая имеет большую плотность (r = 1,0 г/см 3). Открыв кран делительной воронки, можно аккуратно слить нижний слой и отделить одну жидкость от другой.

Рис. 15.2. Делительная воронока .

Для разделения жидких веществ (чаще всего органических) используется их растворимость в несмешивающихся растворителях. После отстаивания в делительной воронке слои растворителей разделяют, поочередно сливая. Потом растворитель выпаривают или отгоняют. Для очистки органических веществ часто применяют различные виды перегонки: фракционную, с водяным паром, под низким давлением (в вакууме).

Фракционная перегонка (рис. 15.3)применяется для разделения смесей жидкостей с различными температурами кипения. Жидкость с меньшей температурой кипения закипает быстрее и раньше проходит через фракционную колонку (или дефлегматор ). Когда эта жидкость достигает верха фракционной колонки, то попадает в холодильник , охлаждается водой и через аллонж собирается в приемник (колбу или пробирку).

Рис. 15.3 Установка для фракционной перегонки: 1 – термометр; 2 – дефлегматор; 3 – холодильник; 4 – алонж; 5 – приемник; 6 – перегонная колба; 7 – капилляры; 8 – нагреватель.

Фракционной перегонкой можно разделить, например, смесь этанола и воды. Температура кипения этанола 78°С, а воды 100°С. Этанол испаряется легче и первым попадает через холодильник в приемник.

Хроматография (адсорбционная) – метод разделения смесей, предложенный в 1903 г М.С. Цветом. Являясь общепризнанным физико-химическим методом, хроматография позволяет разделять, а также проводить качественный и количественный анализ самых разнообразных смесей. В основе хроматографических методов лежит широкий круг физико-химических процессов: адсорбция, распределение, ионный обмен, диффузия и т.д. Разделение анализируемой смеси часто ведут на колонках, наполненных силикагелем, оксидом алюминия, ионитами (ионообменными смолами) или же на специальной бумаге. Вследствие различной сорбируемости определяемых компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) – возникает хроматограмма, позволяющая выделить и проанализировать индивидуальные вещества.

После очистки соединения можно приступать к качественному анализу. Для определения состава органического вещества устанавливают, какие элементы входят в его состав. Для этого элементы из состава этого вещества переводят в хорошо известные неорганические вещества и открывают их методами неорганической и аналитической химии.