Самодельные измерительные приборы. Идентификатор стабилитронов – приставка к мультиметру Измерение стабилитронов

В связи с распространением дешевых малогабаритных цифровых вольтметров, появилась возможность изготовить простые приборы-пробники для контроля различных величин. Данный прибор позволяет измерить падние напряжения на переходах полупроводников при фиксированном токе. Контроль напряжения ведется по цифровому вольтметру, который и определяет точность результатов. Прибор состоит из трех частей, собственно вольтметра, источника тока и преобразователя напряжения. Источник тока собран по классической схеме на стабилизаторе LM317. Трехпозиционный переключатель с нейтральным средним положением и набор резисторов обеспечивают три значения тока: 1, 5 и 10 мА. Если требуется большая точность рабочего тока, к примеру что бы оценивать номиналы резисторов, то нужно подобрать номиналы резисторов. На схеме приведены расчетные данные, но если высокая точность не нужна, можно ставить резисторы из ближайшего ряда.

Схема принципиальная

Преобразователь собран на 555 таймере, и служит для повышения напряжения с 12 рабочих, да 32 максимальных для вольтметра. Подстройка выходного напряжения осуществляется подстроечным резистором.

Обсудить статью ТЕСТЕР СТАБИЛИТРОНОВ И ДИОДОВ

Давно снимал видео на тему тестера для стабилитронов, устройство довольно популярно и пользуется спросом среди радиолюбителей, поэтому решил написать эту статью.

В отличие от ранее указанного ролика, в этом проекте использованы готовые модули из Китая, что облегчает сборку.

Итак для начала о компонентах, забегая вперед скажу, что затрат всего на пару долларов, а все ссылки на покупку нужных компонентов будут в конце статьи.

Понадобиться нам повышающий DC-DC конвертор на базе микросхемы MT3608.

Плата позволяет получить выходное напряжение 28-30 Вольт, минимальное входное напряжение 2-2,5Вольт.

Вторая платка тоже из китая, это контроллер заряда для одной банки литий-ионного аккумулятора с защитой, построен на базе микросхемы TP4056.

Литий ионный аккумулятор, подойдет любой стандарт, хоть от мобильного телефона.

В моем же варианте аккумулятор заменен на перезаряжаемые никель-металл-гидридный аккумулятор, батарейки стандарта ААА, взял 3 штуки, потом подключил последовательно, в итоге получил аналог одной банки литий-ионного аккумулятора. Обусловлено такое решение ограниченным пространством в корпусе.

Сам корпус решил сделать компактным, донором послужил дешевый power bank за доллар, позже корпус местами подточил, чтобы начинка влезла.

Нам также нужен мини цифровой вольтметр, в моем случае этот вольтметр измеряет напряжение до 32-х вольт, и не имеет третьего провода (измерительный), т.е. подключается напрямую к источнику питания, в нашем случае к стабилитрону, чтобы измерить напряжение стабилизации последнего.

Нужно помнить, что вольтметр потребляет некоторый ток, поэтому, чтобы не перегружать стабилитрон, желательно использовать вольтметр с тремя проводками - два провода питания и один для измерителя.
Именно мой вольтметр легко переделать под три провода, китайцы просто замкнули плюс питания с измерительным проводом.

Кстати, для работы таких вольтметров нужно напряжение не мене 4-х вольт, для того, чтобы показания были корректными, минимальное напряжение питания должно быть в районе 4,5-5 вольт, максимальное - 32 вольта, поэтому вольтметр питается напрямую с выхода повышающего преобразователя, напряжение аккумулятора недостаточно.

В связи с этим наш прибор может тестировать стабилитроны, напряжение стабилизации которых не более 30 вольт.

Выключатель или кнопка без фиксации, на любой ток, нужна кнопка для включения прибора, тест занимает пару секунд.

Электролитический конденсатор вольт на 50 с емкостью от 10 до 47мкФ, он подключается на выход преобразователя и предназначен для сглаживания пульсаций, это нужно для корректной работы вольтметра.

Резистор 2кОм, нужен для ограничения тока через стабилитрон, иначе последний сгорит. Расчет этого резистора делается исходя из нескольких величин, именно для нашего случая нужен резистор от 2-х до 2,2кОм, мощность 0,25ватт.

Панелька беспаечного монтажа для микросхем в корпусе DIP8, DIP14 или DIP16, особой разницы нет.

В эту панельку ставиться тестируемый стабилитрон.

Итак, модуль повышающего преобразователя на микросхеме MT3608 как уже сказал, может обеспечить максимальное выходное напряжение 28-30В, которое легко можно поднять до 40В.

Смотрим на схему модули этой платки. Видим постоянный резистор подключенный последовательно с подстроечным.

А теперь выпаиваем и на его место ставим перемычку.

Следующим делом подаем на вход платы напряжение около 4-х вольт, имитируя подключенный литиевый аккумулятор, на выход платы подключаем мультиметр, потом и вращаем подстроечный резистор 10 шагов против часовой стрелки.
Должен заметить, что только после 10 шагов модуль начнет повышать напряжение (да, странно, но это не я придумал). Потом смело вращаем подстроечник до напряжение в 35 вольт, после 35 вращаем крайне аккуратно и медленно пока мультиметр не покажет напряжение в 40 Вольт, если повышать дальше, мгновенно растет ток потребления и микросхема сгорит (случится это при напряжении 45-50 Вольт).
Таким образом, наша плата на 30 вольт стала выдавать целых 40вольт, но я крайне не советую так поступать, лучше оставить все как есть.

Дело за малым, собираем все по схеме.

Выключатель был установлен сбоку, панелька и вольтметр были расположены на задней крышке, которая теперь стала лицевой панелью.

Наверняка у многих радиохламеров пылятся в кладовках кучи радиодеталей, неизвестно когда и откуда выпаяных, но внешне похожих на диоды (у меня по-крайней мере так). И многих наверное мучают вопросы: как проверить их исправность, нет ли среди них стабилитронов и, если есть, то как узнать напряжение стабилизации этих стабилитронов. Похожие вопросы возникают и по-поводу выпаянных светодиодов: как узнать живые они или нет, как узнать где у них катод, а где анод (ноги-то у выпаянных светиков одинаковой длины).

Обычные диоды легко прозваниваются большинством мультиметров, но в случае со стабилитронами и светодиодами мультиметры не подходят, — у них слишком маленький тестовый ток и низкое напряжение питания.

Помочь в данном случае может описанное ниже небольшое устройство на весьма распространённой микрухе TL431. По-сути это небольшой источник тока, способный выдавать 2-4 мА, чего уже вполне достаточно для проверки маломощных светодиодов или стабилитронов.

Итак, схема :

  1. R 1 =3,6 кОм, R 2 =510 Ом, R 3 =500 Ом
  2. T 1 — любой маломощный npn транзистор, выдерживающий напряжение Uкэ=30-35 В
  3. Напряжение питания схемы = 9-28 В

Схема работает очень просто — TL-ка управляет транзистором таким образом, чтобы напряжение на её первой ноге было постоянным и равным 2,495 В. Получается, что в большей или меньшей степени открывая транзистор, TL-ка фактически стабилизирует падение напряжения на резисторах R 2 R 3 , а значит и ток через них. Этот ток складывается из тока коллектора и тока базы транзистора, но учитывая, что ток базы значительно меньше тока коллектора, мы можем считать, что ток коллектора тоже получается стабильным. А ток коллектора — это и есть наш тестовый ток, которым мы будем проверять светики и стабилитроны.

Падание напряжения на подопытной детали, при заданном тестовом токе, нужно измерять между точками test+ и test-. Для стабилитронов это и будет искомое напряжение стабилизации (это если правильно включили, иначе мультик покажет падение на pn-переходе в прямом направлении).

Подстроечный резистор позволяет в некоторых пределах менять тестовый ток. С указанными номиналами мы можем менять его от 2,495/(510+500)=2,47 мА до 2,495/510=4,9 мА.

Резистор R 1 рассчитывается исходя из того, что напряжение на 3-й ноге TL-ки при любом напряжении питания должно быть примерно на 0,5 В выше, чем напряжение на первой ноге (выше на величину Uбэ транзистора) и при этом ток через TL-ку должен быть в рабочих пределах (1-100 мА по даташиту). Ну и конечно желательно, чтобы этот резистор поменьше грелся.

С указанными значениями R 1 и напряжения питания, ток через TL-ку будет меняться от (9-0,5-2,495)/3,6 = 1,67 мА до (28-0,5-2,495)/3,6 = 6,95 мА, что вписывается в диапазон рабочего тока TL-ки. Причём вписывается как раз ближе к минимальной границе, что обеспечивает минимальный нагрев.

Следует учесть, что напряжение питания схемы определяет максимальное напряжение стабилизации, которое мы можем проверить (оно примерно на 3-3,5 В ниже напряжения питания). То есть, например, при 9-ти вольтовом питании схемы, мы сможем проверять только стабилитроны с напряжением стабилизации до 5,5-6 В (например на 4,7 В или на 5,1 В), а при 28-вольтовом питании можно проверять стабилитроны с напряжением стабилизации до 24,5-25 В.

Фото готового устройства :

Скачать плату (DipTrace, разводка под SMD)

В качестве клемм test+, test- я использовал держатель для миниатюрных круглых предохранителей, в качестве блока питания — ноутбучную зарядку на 19,5 Вольт (для тех, кто читал ветку про , — да, да, ту самую ноутбучную зарядку.)

Если такой чудной зарядки у вас нет, то можно изготовить самодельный повышающий преобразователь (). Преобразователь нужен маломощный, токи-то в нашей схеме всего лишь миллиамперные.

Вот в общем-то и всё, удачи.

Внешне стабилитрон похож на диод, выпускается в стеклянном и металлическом корпусе. Его главное свойство заключается в сохранении постоянного напряжения на своих выводах при достижении определенного потенциала. Это наблюдается у него при достижении напряжения туннельного пробоя.

Обычные диоды при таких значениях быстро доходят до теплового пробоя и перегорают. Стабилитроны, их еще называют диодами Зенера, в режиме туннельного или лавинного пробоя могут находиться постоянно, без вреда для себя, не доходя до теплового пробоя. Прибор изготавливается из монокристаллического кремния, в электронной аппаратуре выступает как стабилизатор или опорное напряжение. Высоковольтные защищают от перенапряжений, интегральные стабилитроны со скрытой структурой используются в качестве эталонного напряжения в аналого-цифровых преобразователях.

Проверка тестером

Так как стабилитрон и диод имеют почти одинаковые вольтамперные характеристики за исключением участка пробоя, то мультиметром стабилитрон проверяется, как и диод.

Проверка осуществляется любым мультиметром в режиме прозвона диода или определения сопротивления. Выполняются такие действия:

  • переключателем устанавливают диапазон измерения Омов;
  • к выводам радиодетали подсоединяются измерительные щупы;
  • мультиметр должен показать единицы или доли Ом, если его внутренний источник питания подключится плюсом к аноду;
  • поменяв щупы местами, меняем полярность напряжения на выводах полупроводника и получаем сопротивление близкое к бесконечности, если он исправен.

Чтобы убедиться в исправности стабилитрона переключаем мультиметр на диапазон измерения сопротивления в килоомах и проводим измерение. При исправном приборе, показания должны лежать в пределах десятков и сотен тысяч Ом. То есть он пропускает ток, как обычный диод.

Частные случаи

Иногда, мультиметр при проверке исправного полупроводника в режиме измерения сопротивления при обратной полярности показывает значение сильно отличающееся от ожидаемого. Вместо сотен килоом – сотни ом. Создается впечатление, что он пробит, и прозванивается в обе стороны.

Это возможно в случае использования в мультиметре внутреннего источника питания, превышающего напряжение стабилизации стабилитрона.

Полупроводник уменьшает свое внутреннее сопротивление до тех пор, пока не достигнет напряжения стабилизации. Поэтому при измерениях необходимо это учитывать.

Иногда, при прозвонке мультиметр показывает большое сопротивление при прямом и обратном потенциале. Скорее всего, это двуханодный стабилитрон, поэтому для него полярность значения не имеет. Для проверки исправности потребуется приложить напряжение чуть больше стабилизирующего, при этом менять полярность. Измеряя токи, проходящие через него и сравнивая вольтамперные характеристики прибора можно выяснить состояние устройства.

Проверка диода Зенера на печатной плате затруднена влиянием других элементов. Для надежного контроля работоспособности необходимо выпаять один вывод, производить измерения вышеописанным способом.

Тестер для стабилитронов

Проверка стабилитронов мультиметром не дает 100% гарантии их исправности. Это связано с тем, что он не может проверить его основные параметры. Поэтому многие радиолюбители изготавливают тестер стабилитронов своими руками.

Схема самого простого варианта состоит из набора аккумуляторов, постоянного резистора номиналом 200 Ом, переменного сопротивления на 2 кОм и мультиметра. Аккумуляторы соединяются последовательно для получения потенциала необходимого для измерения параметров стабилитронов. Напряжения стабилизации в основном лежат в пределах 1,8-16 В. Поэтому собирается батарея на 18 В. Затем к ее выводам параллельно подсоединяем последовательную цепочку из переменного резистора на 2 кОм мощностью 5 Вт и постоянного на 200 Ом. Второй будет играть роль ограничивающего сопротивления. Выводы переменного резистора присоединяются к трехконтактной клеммной колодке. К первому контакту присоединяется вывод, подключенный к плюсу батареи, ко второму другой крайний вывод, а к третьему средний подвижный контакт резистора.

В других вариантах тестеров можно применять импульсные источники питания с регулируемым напряжением выходного каскада, но суть не меняется, измерителем остается мультиметр.

Определение характеристик

Для проверки исправности стабилитрона и соответствия паспортным данным необходимо проверить его работу на разных напряжениях. Сначала надо прозвонить в режиме измерения сопротивления. Убедившись в отсутствии пробоя, на первом и третьем контакте колодки выставляется разность потенциалов 0,1 вольта. Это достигается регулировкой резистора. Проверка происходит в режиме измерения постоянного напряжения . Анод проверяемого стабилитрона подсоединяется к третьему контакту колодки, а катод подключается к первому. Щупы тестера подсоединяются к ним же.

Регулировкой переменного резистора увеличиваем обратное напряжение на полупроводнике до тех пор, пока оно не перестанет изменяться. Если это произошло, значит, стабилитрон достиг напряжения стабилизации и работает нормально. Иногда требуется определить его вольтамперную характеристику. Тогда к предыдущей схеме добавляется тестер, работающий в режиме амперметра, соединенный последовательно со стабилитроном. При изменении вольтажа с определенным шагом, снимаются значения напряжения и тока, строится график, получается вольтамперная характеристика.

Добрый день. Предлагаю вашему вниманию простой тестер, для проверки стабилитронов. Если проверить диод или переход биполярного транзистора можно обычным мультиметром, с функцией прозвонки диодов, то узнать напряжение стабилизации стабилитрона можно лишь подав на него напряжение достаточной величины. Однако у многих стабилитронов рабочее напряжение более 30-ти вольт (например кс527 и т.д.), что исключает возможность использовани простого блока питания. Да и для низковольтных стабилитронов есть риск вывести его из строя, превысив при испытании его предельно допустимый ток. Поэтому сборка данного устройства вполне оправдана.

Принципиальная схема тестера:

Основой его является step-up преобразователь на микросхеме МС34063, который преобразует 9вольт в 45 вольт. Далее стоит резистор на 15К который ограничивает выходной ток до 3-х миллиамер, чтобы не сжечь тестируемый элемент, далее стоит вольтметр для измерения напряжения падающего на элементе, и чтобы было удобнее пользоватся - кнопка с двумя группами контактов для изменения полярности на выходных клемах. Данным тестером пользуюсь больше года, так как действительно очень удобно.


Им можно проверять не только напряжение стабилизации стабилитронов, но и исправность светодиододов, обычных диодов, резисторы, лапы накаливания, ТЕНы и катушки на предмет обрыва, или дорожки на печатной плате на наличие
замыкания.