Соединение обмоток генератора треугольником. Соединение обмоток генератора и потребителей электрической энергии звездой

При работе 3-х фазного генератора в каждой его обмотке создается ЭДС в форме синусоидального колебания. Все вектора разнесены по углу вращения на 120° и могут быть описаны формулами:

e А =Е m sinωt, E А =Ефe j0° ;
e В =Е m sin(ωt-120°), E В =Ефe -j120° ;
e С =Е m sin(ωt-240°)=Е m sin(ωt+120°), E С =Ефe j120° .

Для подключения обмоток генератора в связанную систему применяется одна из двух схем:

- “звезда” (Y);
- “треугольник” (Δ).


“Звезда” . Для схемы “звезды” все выходы обмоток фаз статора подключают к единой общей точке N , именуемую нейтральной либо нулевой точкой. Входа (начала) обмоток каждой фазы А, В и С подключают к линейным выводам генератора.

“Треугольник” . Для этой схемы соединения формируют выходные фазы:

- “А” подключением выхода обмотки А ко входу обмотки C ;
- “В” подключением выхода обмотки В ко входу обмотки А ;
- “С” подключением выхода обмотки С ко входу обмотки В .

Точки подключения А, В и С используются как линейные выводы у генератора.



Векторные диаграммы . У работающего генератора , обмотки которого соединены по схеме “звезда” диаграмма векторов напряжений имеет форму равностороннего треугольника с центром в начале координат и расположенного симметрично относительно оси ординат.

Его стороны представлены векторами линейных напряжений с направлением вращения противоположным ходу часовой стрелки. Вектора фазных напряжений соединяют центр треугольника с вершинами по направлению от начала координат.

Под термином фазного напряжения понимают разность потенциалов между общим выводом N и линейным А, В или С и маркируют: U A , U B , U C . Напряжения в фазах генератора равны ЭДС обмоток: Е А =U А, Е В =U В, Е С =U С .

Линейное напряжение генератора измеряется между двумя любыми его выводами и обозначается по наименованию выбранных фаз: U AВ, U BС, U CА . Величина вектора линейного напряжения определяется геометрической разностью векторов соответствующих фаз:

U AВ =U A -U В;
U BС =U В -U С;
U CА =U С -U A .

У генератора с обмотками соединенными по схеме “треугольник” диаграмма векторов напряжений тоже имеет форму равностороннего треугольника, но он относительно центра координат провернут на 30° по направлению движения часовой стрелки.

Соотношения линейных и фазных напряжений для генератора, собранного по схеме “треугольника”, остаются теми же, что и для генератора, работающего по схеме “звезда”.

Расчеты параметров трехфазных сетей проводятся математическими способами (например, комплексный метод) и способами геометрических сложений.

Для этого выбирают один из векторов в качестве начального, ориентируют его в комплексной плоскости с учетом направления и величины. Остальные вектора достраивают по углам сдвига их фаз относительно выбранного начального вектора с учетом их величин.

Обычные расчеты для схемы соединения “звезда” проще начинать с определения напряжения вектора фазы А , который в данной системе выходит из начала координат комплексной плоскости в направлении на север. Выражения фазных напряжений в комплексной форме для такого расчета описываются формулами:

U А =Uфe j0° ;
U В =Uфe -j120° ;
U С =Uфe j120°
.

Формулы для линейных векторов имеют следующий вид:

U АВ =Uлe j30° ;
U ВС =Uлe -j90° ;
U СА =Uлe j150° .

Для схем “треугольник” за начальный отсчет принимают вектор линейного напряжения U АВ . Формулы вычисления фазных векторов напряжений принимают выражения:

U А =Uфe -j30° ;
U В =Uфe -j150° ;
U С =Uфe j90° .

Вектора линейных напряжений описываются формулами:

U АВ =Uлe j0° ;
U ВС =Uлe -j120° ;
U СА =Uлe j120° .

Проведя геометрические вычисления не сложно определить линейную величину вектора по значению фазной:

U л =2U ф cos30°=2U ф √3/2=U ф √3.

Важно! Схема соединения обмоток “треугольник” для генератора практически не пригодна для реального использования, поэтому ее запрещено применять.

В фазах схемы “треугольник” образуется общий контур, у которого возникает суммарная ЭДС Σe=e AB +e BC +e CA . Значения полных сопротивлений в обмотках маленькие и даже небольшая величина суммарной ЭДС Σe>0 вызывает в магистралях “треугольника” уравнительные токи, которые сопоставимы с номинальным значением тока в генераторе. Это создает большие потери энергии и значительно уменьшает КПД генератора.

У энергетиков существует определение номинального напряжения для 3-х фазной системы. Им называют линейные напряжения, которые выражаются в киловольтах (кВ, kV). Их представляют значениями 0,4; 1,1; 3,5; 6,3; 10,5; 22; 35; 63; 110; 220; 330; 500; 750.

Для потребителей электроэнергии номинальную величину 3-х фазного напряжения допускается указывать соотношениями линейных и фазных напряжений U Л /U Ф . Для электросети 0,4 кВ оно будет иметь вид: 380/220 вольт.


Для уменьшения количества проводов между генератором и потребителем фазные обмотки должны быть соединены между собой определённым образом, как в генераторе, так и у потребителя. Обмотки генератора обозначаются: U1 – U2,

V1 – V2, W1 – W2 (фазы A, B, C). Индексом 1 обозначается начало обмотки, индексом 2 – конец.

Соединения обмоток генератора

На рис. 68 показана схема генератора, у которого имеются три независимые взаимно изолированные однофазные цепи. Э. д. с. в этих цепях одинаковы, имеют одинаковые амплитуды и сдвинуты по фазе на 1/3 периода. К каждой паре зажимов обмотки статора генератора можно подключить провода, подводящие ток к нагрузке. Эти три фазы выгоднее объединить в одну общую трехфазную систему. Для этого обмотки генератора соединяют между собой звездой или треугольником.

При соединении обмоток генератора звездой (рис. 69) концы всех трех фаз X, Y и Z (или началаA, В и С) соединяются между собой, а от начал (или концов) выводятся провода, отводящие энергию в сеть. Полученные таким образом три провода называются линейными, а напряжения между любыми двумя линейными проводами - линейными напряжениями Uл. От общей точки соединения концов (или начал) трех фаз (от нулевой точки звезды) может быть отведен четвертый провод, называемый нулевым. Напряжение между любым из трех линейных проводов и нулевым проводом равно напряжению между началом и концом одной фазы, т. е. фазному напряжению Uф.
Обычно все фазы обмотки генератора выполняют одинаковыми так, что действующие значения э. д. с. в фазах равны, т. е. ЕА = ЕB = ЕC . Если в цепь каждой фазы генератора включить нагрузку, то по этим цепям будут протекать токи. В случае одинакового по величине и характеру сопротивления всех трех фаз приемника, т. е. симметричной (равномерной) нагрузке, токи в фазах будут равны по силе и сдвинуты по фазе относительно своих фазных напряжений на один и тот же угол φ. Как максимальные, так и действующие значения фазных напряжений при равномерной нагрузке равны, т. е. UА = UB = Uc. Эти напряжения сдвинуты по фазе на 120°, как показано на векторной диаграмме (рис. 70).

Напряжение между любыми точками схемы (см. рис. 69) соответствует векторам (см. рис. 70) между теми же точками. Так, например, напряжение между точками А и O схемы (фазное напряжение UA) изображается вектором АО диаграммы, а напряжение между линейными проводами A и B схемы - вектором линейного напряжения АВ диаграммы. По векторной диаграмме легко установить соотношение между линейным и фазным напряжениями. Из треугольника АОа можно записать следующее соотношение:

т. е. при соединении обмоток генератора звездой линейное напряжение в раза больше фазного (при равномерной нагрузке).
Из схемы (см. рис. 69) видно, что при соединении обмоток генератора звездой ток в линейном проводе равен току в фазе генератора, т. е. Iл = Iф.
На основании первого закона Кирхгофа можно записать, что ток в нулевом проводе равен геометрической сумме токов в фазах генератора, т. е.

При равномерной нагрузке токи в фазах генератора равны между собой по величине, но сдвинуты по фазе один относительно другого на 1/3 периода. Геометрическая сумма токов трех фаз в этом случае равна нулю, т. е. в нулевом проводе тока не будет. Поэтому при симметричной нагрузке нулевой провод может отсутствовать. Так как ток в нулевом проводе возникает лишь вследствие несимметрии нагрузки, а обычно эта несимметрия мала, то в большинстве случаев нулевой провод имеет меньшее поперечное сечение, чем линейные.

Соединение звездой

Если фазные обмотки генератора или потребителя соединить так, чтобы концы обмоток были соединены в одну общую точку, а начала обмоток присоединены к линейным проводам, то такое соединение называется соединением звездой и обозначается условным знаком Y. На рис. 1 обмотки генератора и потребителя соединены звездой. Точки, в которых соединены концы фазных обмоток генератора или потребителя, называются соответственно нулевыми точками генератора (0) и потребителя (0’). Обе точки 0 и 0’ соединены проводом, который называется нулевым, или нейтральным проводом. Остальные три провода трехфазной системы, идущие от генератора к потребителю, называются линейными проводами. Таким образом, генератор соединен с потребителем четырьмя проводами. Поэтому эта система называетсячетырехпроводной системой трехфазного тока.

Сравнивая несвязанную и четырехпроводную системы трехфазного тока, видим, что в первом случае роль обратного провода выполняют три провода системы, а во втором – один нулевой провод. По нулевому проводу протекает ток, равный геометрической сумме токов:
IA, IB и IC, т. е. Ī0= ĪA + ĪB + ĪC.
Напряжения, измеренные между началами фаз генератора (или потребителя) и нулевой точкой (или нулевым проводом), называются фазными напряжениями и обозначаются UA, UB и UC, или в общем виде Uф. Часто задаются величины э.д.с. фазных обмоток генератора. Они обозначаются ЕA, ЕB и ЕC, или Еф. Если пренебречь сопротивлениями обмоток генератора, то можно записать:
ЕA= UA, ЕВ= UВ, ЕC= UС.
Напряжения, измеренные между началами двух фаз: А и В, В и С, С и А – генератора или потребителя, называются линейными напряжениями и обозначаются UАВ, UВС, UСА, или в общем виде Uл. На рис. 1 стрелки показывают выбранное положительное направление тока, которое в линейных проводах принято от генератора к потребителю, а в нулевом проводе – от потребителя к генератору.

Если присоединить зажимы вольтметра к точкам А и В, то он покажет линейное напряжение UАВ. Так как положительные направления фазных напряжений UA, UB и UC выбраны от начал фазных обмоток к их концам, то вектор линейного напряжения UАВ будет равен геометрической разности векторов фазных напряжений UA и UB:
ŪAВ=ŪA- ŪВ.
Аналогично можно записать:
ŪВС=ŪВ- ŪС;
ŪСА=ŪС- ŪА.
Иначе можно сказать, что мгновенное значение линейного напряжения равно разности мгновенных значений соответствующих фазных напряжений. На рис. 2 вычитание векторов заменено сложением векторов:
UA и - UB; UВ и - UС; UС и - UА.
Из векторной диаграммы видно, что векторы линейных напряжений составляют замкнутый треугольник.

Зависимость между линейным и фазным напряжениями:
UBС=2UBcos30o, так как cos30o=√3/2, то UBС=√3UB,
или в общем виде Uл=√3Uф.
Следовательно, при соединении звездой линейное напряжение в √3 раз больше фазного напряжения.

Ток, протекающий по фазной обмотке генератора или потребителя, называется фазным током и обозначается в общем виде Iф. Ток, протекающий по линейному проводу, называется линейным током и обозначается в общем виде Iл. На рис. 1 видно, что при соединении звездой линейный ток равен фазному току, т. е.
Iл=Iф.

Рассмотрим случай, когда нагрузка в фазах потребителя одинакова как по величине, так и по характеру. Такая нагрузка называется равномерной, или симметричной. Это условие выражается равенством
z1= z2= z3.
Нагрузка не будет равномерной, если, например, z1= r1=0,5ом; z2=ωL2=0,5ом и z3=1/ωC3=0,5ом, так как здесь выполнено лишь одно условие – равенство сопротивлений фаз потребителя по величине, в то время как характер сопротивлений различен (r1 - активное сопротивление, ωL2 - индуктивное сопротивление, 1/ωC3 - емкостное сопротивление).

При симметричной нагрузке
IА=UА/zА; IВ=UВ/zВ; IС=UС/zС; IА=IВ=IС.
Фазные коэффициенты мощности вследствие равенства сопротивлений и одинаковости их характера будут одинаковы:
cosφ1=rА/zА; cosφ2=rB/zB; cosφ3=rC/zC; cosφ1=cosφ2=cosφ3.
В нулевом проводе должна протекать геометрическая сумма токов всех трех фаз. Если посмотреть на кривые изменения токов при симметричной нагрузке трехфазной системы, то увидим, что максимальные значения для всех трех синусоид тока одинаковы. Поскольку при симметричной нагрузке сумма мгновенных значений токов трехфазной системы равна нулю, следовательно, ток в нулевом проводе будет равен нулю.

Отбрасывая нулевой провод в четырехпроводной системе, переходим к трехпроводной системе трехфазного тока. Если имеется симметричная нагрузка, как, например, трехфазные двигатели переменного тока, трехфазного тока, трехфазные печи, трехфазные трансформаторы и т. п., то к такой нагрузке подводятся только три провода. Потребители, включенные звездой с несимметричной нагрузкой фаз, нуждаются в нулевом проводе.

При симметричной нагрузке фазные напряжения отдельных фаз равны между собой. При несимметричной нагрузке трехфазной системы симметрия токов и напряжений нарушается. Однако в четырехпроводных цепях часто пренебрегают незначительной несимметрией фазных напряжений. В этих случаях между линейными и фазными напряжениями существует зависимость
Uл=√3Uф.

Соединение обмоток трехфазного генератора

2. Способы соединения обмоток трехфазных генераторов

В обмотках трехфазного генератора индуктируются синусоидальные ЭДС, сдвинутые по фазе на 1200:
,
,
,
Между собой фазные обмотки генератора могут соединяться по двум различным схемам: звездой () и треугольником ().
При соединении в звезду концы фазных обмоток (фаз) генератора соединяются в общую точку N , которая называется нулевой или нейтральной, а начала обмоток служат линейными выводами генератора А , В , С (рис. 88).
Векторная диаграмма напряжений трехфазного генератора при соединении его фазных обмоток в звезду показана на рис. 89а, б.
В трехфазном генераторе различают фазные и линейные напряжения. Фазными называются напряжения между началами и концами фазных обмоток или между одним из линейных выводов А, В, С и нулевым выводом N . Фазные напряжения равны фазным ЭДС: U А=Е А, U В=Е В, U С=Е С (индекс N при фазных напряжениях опускается, так как φN = 0). Линейными называются напряжения между двумя линейными выводами А, В, С . Линейные напряжения равны векторной разности двух фазных напряжений: U АВ =U А -U В; U ВС =U В -U С ; U СА =U С -U А.






При расчете трехфазных цепей комплексным методом фазные и линейные напряжения генератора представляются в комплексной форме, при этом один из векторов системы принимают за начальный и совмещают его с вещественной осью, а остальные вектора получают начальные фазы согласно их углам сдвига по отношению к начальному вектору. На рис. 89а показан вариант представления напряжений трехфазного генератора в комплексной форме, когда за начальный вектор принимается фазное напряжение фазы А. В этом случае фазные напряжения генератора в комплексной форме получат вид: , , , линейные напряжения: , , .
На рис. 89б показан другой вариант представления напряжений трехфазного генератора в комплексной форме, когда за начальный вектор принимается линейное напряжение U AB. В этом случае фазные напряжения генератора в комплексной форме получат вид: , , , линейные напряжения: , , .
Из геометрии рис. 5 получаем соотношение между модулями линейного и фазного напряжений: = 2 cos 300 =2=.
Обмотки трехфазного генератора теоретически можно включать по схеме треугольника. В такой схеме конец каждой предыдущей фазы соединяется с началом последующей, а точки соединения служат линейными выводами генератора (рис. 90).


При соединении фаз в треугольник в его контуре действует сумма фазных ЭДС: = еАВ + еВС + еСА . В реальных трехфазных генераторах технически невозможно обеспечить равенство нулю для суммарной ЭДС. Так как собственные сопротивления обмоток генератора малы, то даже незначительная по величине суммарная ЭДС 0 может вызвать в контуре треугольника уравнительный ток, соизмеримый с номинальным током генератора, что привело бы к дополнительным потерям энергии и снижению КПД генератора. По этой причине обмотки трехфазных генераторов запрещается соединять по схеме треугольника.
Номинальным напряжением в трехфазной системе называется линейное напряжение. Номинальное напряжение принято выражать в киловольтах (кВ). Шкала номинальных трех-фазных напряжений, применяемых на практике, имеет вид: 0,4; 1,1; 3,5; 6,3; 10,5; 22; 35; 63; 110; 220; 330; 500; 750. На потребительском уровне номинальное трехфазное напряжение может указываться в виде отношения U Л ⁄ U Ф, например: U Л ⁄ U Ф = 380 ⁄ 220 В.

При соединении обмоток звездой концы обмоток X, Y, Z соединяются в одну точку, называемую нулевой точкой или нейтралью генератора (рис. 7-5). В четырехпроводной системе к нейтрали присоединяется нейтральный или нулевой провод. К началам обмоток генератора присоединяются три линейных провода.

Напряжения между началами и концами фаз, или, что то же, напряжения между каждым из линейных проводов и нулевым называются фазными напряжениями и обозначаются или в общем виде

Пренебрегая падением напряжения в обмотках генератора, можно считать фазные напряжения равными соответствующим э. д. с., индуктированным в обмотках генератора.

Напряжения между началами обмоток, или, что то же, между линейными проводами, называются линейными напряжениями и обозначаются или в общем виде

Установим соотношение между линейными и фазными напряжениями при соединении обмоток генератора звездой.

Рис. 7-5. Схема соединения обмоток генератора звездой.

Рис. 7-6. Векторная диаграмма напряжений трехфазной цепи.

Так как конец первой фазы X соединен не с началом второй фазы, а с концом ее Y, что аналогично встречному соединению двух источников э. д. с. при постоянном токе, то мгновенное значение линейного напряжения между проводами А и В будет равно разности соответствующих фазных напряжений, т. е.

аналогично мгновенные значения других линейных напряжений

Таким образом, мгновенное значение линейного напряжения равно алгебраической разности мгновенных значений соответствующих фазных напряжений.

Так как изменяются по синусоидальному закону и имеют одинаковую частоту, то и линейные напряжениябудут изменяться синусоидально, причем действующие значения линейных напряжений можно определить из векторной диаграммы (рис. 7-6):

Из сказанного следует, что вектор линейного напряжения равен разности векторов соответствующих фазных напряжений.

Фазные напряжения сдвинуты друг от друга на 120°. Для определения вектора линейного напряженияиз вектора напряжениянужно геометрически вычесть вектор, или, что то же, прибавить равный по величине и обратный по знаку вектор -.

Аналогично вектор линейного напряжения получим как разность векторов напряженийи вектор линейногонапряжения как разность векторови ОА.

Опуская перпендикуляр из конца произвольно взятого вектора фазного напряжения, например , на вектор линейного напряженияполучим прямоугольный треугольник ОНМ, из которого следует, что

Рис. 7-7. Векторная диаграмма напряжений при соединении обмоток генератора звездой.

Из векторной диаграммы (рис. 7-6) и последней формулы следует, что действующее значение линейного напряжения в раз больше действующего значения фазного напряжения и что линейное напряжениена 30° опережает фазное напряжение; на такой же угол линейное напряжениеопережает фазное напряжениеи напряжение- фазное напряжение

Смежные, линейные напряжения сдвинуты друг относительно друга на такие же углы (120°), как и смежные фазные напряжения. Звезда векторов линейных напряжений повернута в положительную сторону относительно звезды векторов фазных напряжений на угол 30°.

Необходимо обратить внимание на то, что полученные соотношения между линейными и фазными напряжениями имеют место только при симметричной системе напряжений.

Так как векторы линейных напряжений определяются как разности векторов фазных напряжений, то, соединив концы векторов фазных напряжений, образующих звезду, получим треугольник векторов линейных напряжений (рис. 7-7).

Пример 7-1. Определить линейное напряжение генератора, если фазное напряжение его 127 и 220 В.

Если фазное напряжение 220 В, то

§ 63. Соединения обмоток генератора

На рис. 68 показана схема генератора, у которого имеются три независимые взаимно изолированные однофазные цепи. Э. д. с. в этих цепях одинаковы, имеют одинаковые амплитуды и сдвинуты по фазе на 1/3 периода. К каждой паре зажимов обмотки статора генератора можно подключить провода, подводящие ток к нагрузке. Эти три фазы выгоднее объединить в одну общую трехфазную систему. Для этого обмотки генератора соединяют между собой звездой или треугольником.

звездой (рис. 69) концы всех трех фаз X , Y и Z (или начала A , В и С ) соединяются между собой, а от начал (или концов) выводятся провода, отводящие энергию в сеть. Полученные таким образом три провода называются линейными , а напряжения между любыми двумя линейными проводами - линейными напряжениями U л . От общей точки соединения концов (или начал) трех фаз (от нулевой точки звезды) может быть отведен четвертый провод, называемый нулевым . Напряжение между любым из трех линейных проводов и нулевым проводом равно напряжению между началом и концом одной фазы, т. е. фазному напряжению U ф.
Обычно все фазы обмотки генератора выполняют одинаковыми так, что действующие значения э. д. с. в фазах равны, т. е. Е А = Е B = Е C . Если в цепь каждой фазы генератора включить нагрузку, то по этим цепям будут протекать токи. В случае одинакового по величине и характеру сопротивления всех трех фаз приемника, т. е. симметричной (равномерной) нагрузке, токи в фазах будут равны по силе и сдвинуты по фазе относительно своих фазных напряжений на один и тот же угол φ. Как максимальные, так и действующие значения фазных напряжений при равномерной нагрузке равны, т. е. U А = U B = U c . Эти напряжения сдвинуты по фазе на 120°, как показано на векторной диаграмме (рис. 70).

Напряжение между любыми точками схемы (см. рис. 69) соответствует векторам (см. рис. 70) между теми же точками. Так, например, напряжение между точками А и O схемы (фазное напряжение U A ) изображается вектором АО диаграммы, а напряжение между линейными проводами A и B схемы - вектором линейного напряжения АВ диаграммы. По векторной диаграмме легко установить соотношение между линейным и фазным напряжениями. Из треугольника АОа можно записать следующее соотношение:

т. е. при соединении обмоток генератора звездой линейное напряжение в раза больше фазного (при равномерной нагрузке).
Из схемы (см. рис. 69) видно, что при соединении обмоток генератора звездой ток в линейном проводе равен току в фазе генератора, т. е. I л = I ф.
На основании первого закона Кирхгофа можно записать, что ток в нулевом проводе равен геометрической сумме токов в фазах генератора, т. е.

При равномерной нагрузке токи в фазах генератора равны между собой по величине, но сдвинуты по фазе один относительно другого на 1/3 периода. Геометрическая сумма токов трех фаз в этом случае равна нулю, т. е. в нулевом проводе тока не будет. Поэтому при симметричной нагрузке нулевой провод может отсутствовать. Так как ток в нулевом проводе возникает лишь вследствие несимметрии нагрузки, а обычно эта несимметрия мала, то в большинстве случаев нулевой провод имеет меньшее поперечное сечение, чем линейные.
При соединении обмоток генератора треугольником (рис. 71) начало (или конец) каждой фазы «ия обмоток генератора соединяется с концом (или началом) обмотки другой фазы. Таким образом, три фазы генератора образуют замкнутый контур, в котором действует э. д. c., равная геометрической сумме э. д. с., индуктированных в фазах генератора, т. е. . Так как э. д. с. в фазах генератора равны и сдвинуты на 1/3 периода по фазе, то геометрическая сумма их равна нулю, т. к. векторы э. д. с. образуют замкнутый треугольник и, следовательно, в замкнутом контуре трехфазной системы, соединенной треугольником, никакого внутреннего тока возникать не будет.

Линейные провода при соединении треугольником подключают к точкам соединения начала одной фазы и конца другой. Напряжение между линейными проводами равно напряжению между началом и концом одной фазы. Таким образом, при соединении обмоток генератора треугольником линейное напряжение равно фазному, т. е. U л = U ф.

При равномерной нагрузке в фазах обмотки генератора протекают равные токи, сдвинутые относительно фазных напряжений на одинаковые углы φ, т. е.

I AB = I BC = I CA .

На рис. 72, а изображена векторная диаграмма, на которой показаны векторы фазных напряжений и токов.



Точки соединения фазных и линейных проводов А , В и С являются точками разветвления; линейные токи не равны фазным. Приняв за положительное направление фазных и линейных токов, указанное на рис. 70, на основании первого закона Кирхгофа для мгновенных значений токов можно написать следующие выражения:

Так как токи в катушках синусоидальны, то заменим алгебраическое вычитание мгновенных значений токов геометрическим вычитанием векторов, изображающих их действующие значения.