Спутник - это что? Естественные и искусственные спутники планет. Луна не единственный спутник земли Один ли спутник у Земли

Краткие сведения:
Радиус: 1 738 км
Большая полуось орбиты: 384 400 км
Орбитальный период: 27,321661 суток
Эксцентриситет орбиты: 0,0549
Наклон орбиты к экватору: 5,16
Температура поверхности: от - 160° до +120° С
Сутки: 708 часов
Среднее расстояние до Земли: 384400 км

Луна - это, пожалуй, единственное небесное тело, в отношении которого с древнейших времён ни у кого не было сомнений, что оно движется вокруг . Даже невооружённым глазом на диске Луны видны тёмные пятна различной формы, напоминающие кому лицо, кому двух людей, а кому зайца. Эти пятна ещё в XVII веке стали именовать . В те времена полагали, что на Луне есть вода, а значит, должны быть моря и океаны, как на Земле. Итальянский астроном Джованни Риччоли присвоил им названия, употребляемые и по сей день: , , , , , , , , и др. Более светлые области лунной поверхности считались сушей.

Уже в 1753 г. хорватский астроном Руджер Бошкович доказал, что Луна не имеет . При покрытии ею звезды та исчезает мгновенно, а если бы у Луны была атмосфера, звезда меркла бы постепенно. Из этого следовало, что на поверхности Луны не может быть жидкой воды, так как при отсутствии атмосферного давления она бы немедленно испарилась.

Ещё Галилей открыл на Луне горы. Среди них были и настоящие горные хребты, которым стали давать названия земных гор: Альпы, Апеннины, Пиренеи, Карпаты, Кавказ. Но встречались на Луне и особенные горы - кольцевые, их именовали или цирками. Греческое слово «кратер» означает «чаша». Постепенно название «цирк» сошло со сцены, а термин «кратер» остался.

Риччоли предложил давать кратерам имена великих учёных древности и Нового времени. Так появились на Луне кратеры Платон, Аристотель, Архимед, Аристарх, Эратосфен, Гиппарх, Птолемей, а также Коперник, Кеплер, Тихо (Браге), Галилей. Не за-был Риччоли и самого себя. Наряду с этими известнейшими именами есть и такие, которых сегодня не найти ни в одной книге по астрономии, например Автолик, Лангрен, Теофил. Но тогда, в XVII в., этих учёных знали и помнили.



Карты Луны (сверху вниз): видимое полушарие, восточное полушарие по долготе 120°, западное полушарие по долготе 120°


При дальнейшем изучении Луны к названиям, данным Риччоли, добавились новые. На более поздних картах видимой стороны Луны увековечены такие имена, как Флемстид, Деландр, Пиацци, Лагранж, Дарвин (имеется в виду Джордж Дарвин, создавший первую теорию происхождения Луны), Струве, Делиль.

После того как советские автоматические межпланетные станции серии сфотографировали обратную сторону Луны, на её карты были нанесены кратеры с именами русских учёных и покорителей космоса: Ломоносов, Циолковский, Гагарин, Королёв, Менделеев, Курчатов, Вернадский, Ковалевская, Лебедев, Чебышев, Павлов, а из астрономов - Блажко, Бредихин, Белопольский, Глазенап, Нумеров, Паренаго, Фесенков, Цераский, Штернберг.

Вращение Луны. Время оборота Луны вокруг своей оси в точности соответствует сидерическому месяцу, по этой причине Луна всегда обращена одной и той же стороной к поверхности Земли. Такое положение установилось за миллиарды лет эволюции системы Земля - Луна под действием приливов в лунной коре, вызываемых Землёй. Поскольку Земля в 81 раз массивнее Луны, её приливы примерно в 20 раз сильнее тех, которые Луна вызывает на нашей планете. Правда, на Луне нет океанов, но её кора подвержена приливному воздействию со стороны Земли, так же, как земная кора испытывает приливы от Луны и Солнца. Поэтому если в далёком прошлом Луна вращалась быстрее, то за миллиарды лет её вращение затормозилось.


Схема вращения Луны


Между вращением Луны вокруг оси и её обращением вокруг Земли есть существенное различие. Вокруг Земли Луна обращается по законам Кеплера, т. е. неравномерно: близ перигея быстрее, близ апогея медленнее. Вокруг оси же она вращается равномерно. Благодаря этому иногда можно немного «заглянуть» на обратную сторону Луны с востока, а иногда - с запада. Такое явление называется оптической либрацией (от лат. libratio - «качание», «колебание») по долготе. А небольшой наклон лунной орбиты к эклиптике даёт возможность временами «заглядывать» на обратную сторону Луны то с севера, то с юга. Это оптическая либрация по широте. Обе либрации, вместе взятые, позволяют наблюдать с Земли 59% лунной поверхности. Оптическую либрацию Луны открыл Галилео Галилей в 1635 г., уже после осуждения католической инквизицией.

Лунные затмения. Луна в период полного лунного затмения имеет красноватый цвет. Древние обитатели Южной Америки инки думали, что Луна покраснела от болезни и если она умрёт, то, пожалуй, сорвётся с неба и упадёт.

Норманнам же представлялось, что красный волк Мангарм опять осмелел и напал на Луну. Отважные воины, конечно, понимали, что не могут причинить вреда небесному хищнику, но, зная, что волки не выносят шума, кричали, свистели, били в барабаны. Шумовая атака продолжалась иной раз два, а то и три часа без перерыва.


Луна при полном лунном затмении


А в Центральной Азии затмение проходило в полной тишине. Люди безучастно глядели, как злой дух Раху проглатывает Луну. Никто не шумел и не махал руками. Ведь всякому известно, что добрый дух Очирвани когда-то отсёк демону полтуловища и Луна, пройдя сквозь Раху, как через рукав, засветит вновь. На Руси всегда считалось, что затмение предвещает беду.

Затмения Луны происходят всегда в полнолуние, когда Земля находиться между Луной и Солнцем и все они выстраиваются в один ряд. Освещённая Солнцем Земля отбрасывает в пространство тень. В длину тень имеет вид конуса, вытянутого на миллион километров; поперёк она круглая, а на расстоянии 360 тыс. километров от Земли ее диаметр в 2,5 раза больше лунного. Благодаря этому продолжительность полной фазы иногда достигает полутора часов. Но в момент лунного затмения Луна не полностью темная, а красноватая. Покраснения Луны происходит по причине рассеяния солнечного света в земной атмосфере.


Геометрия лунного затмения


Если бы плоскость орбиты Луны совпадала с плоскостью земной орбиты (плоскостью ), то затмения Луны повторялись бы каждое полнолуние, т. е. регулярно через 29,5 суток. Но месячный путь Луны наклонён к плоскости эклиптики на 5°, и Луна дважды в месяц лишь пересекает «круг затмений» в двух «рискованных» точках. Эти точки называются узлами лунной орбиты. Следовательно, для того чтобы произошло лунное затмение, необходимо совпадение двух независимых условий: должно быть полнолуние и Луна в это время должна пребывать в узле своей орбиты или где-то рядом.

В зависимости от того, насколько близко Луна окажется к узлу орбиты в час затмения, она может пройти через середину конуса тени, и затмение будет максимально продолжительным, а может пройти краем тени, и тогда мы увидим частное лунное затмение. Конус земной тени окружён полутенью. В эту область пространства попадает лишь часть солнечных лучей, не заслонённая Землёй. Поэтому бывают полутеневые затмения. О них тоже сообщается в астрономических календарях, но эти затмения неразличимы для глаза, только фотоаппарат и фотометр способны отметить помрачение Луны во время полутеневой фазы или полутеневого затмения.


Вид лунного затмения с Луны


Восточные жрецы, ещё не очень чётко всё это понимая, веками вели упорный счёт полным и частным затмениям. На первый взгляд в расписании затмений не обнаруживается никакого порядка. Бывают годы, когда случается три лунных затмения, а бывает, что и ни одного. К тому же лунное затмение видно только с той половины земного шара, где Луна в этот час находится над горизонтом, так что с любого места на Земле, например из Египта, можно наблюдать только чуть больше половины всех лунных затмений.

Но упорным наблюдателям небо открыло наконец великую тайну: за 6585,3 суток по всей Земле всегда происходит 28 лунных затмений. В следующие 18 лет 11 дней и 8 часов (а это и составляет названное число суток) все затмения будут повторяться по тому же расписанию. Остаётся только ко дню каждого затмения прибавить 6585,3 суток. Так вавилонские и египетские астрономы научились предсказывать затмения через «повторение». По-гречески это сарос. Сарос позволяет рассчитывать затмения на 300 лет вперед. Когда движение Луны по орбите было хорошо изучено, астрономы научились вычислять не только день затмения, как это делалось по саросу, но и точное время его начала.


Последовательные фазы лунного затмения


Христофор Колумб был первым из мореплавателей, кто, отправляясь в плавание, брал с собой астрономический календарь для определения долготы открытых земель по времени лунного затмения. Во время четвёртого плавания через Атлантику, в 1504 г., лунное затмение застало Колумба на острове Ямайка. Таблицы указывали начало затмения 29 февраля в 1 ч З6 мин по нюрнбергскому времени. Лунное затмение всюду на Земле начинается одновременно. Однако местное время на Ямайке отстает на много часов от времени германского города, потому что Солнце здесь восходит гораздо позже, чем в Европе. Разность в показаниях часов на Ямайке и в Нюрнберге как раз и равна разности долгот этих двух мест, выра-женной в часовой мере. Другого способа более или менее точно определить долготу вест-индийских городов тогда не было.

Колумб стал готовиться к астрономическим наблюдениям на берегу, но туземцы, встретившие мореплавателей с опаской, мешали предварительным наблюдениям Солнца и наотрез отказались снабдить чужестранцев съестными припасами. Тогда Колумб выждав пару дней, объявил, что этим же вечером лишит островитян лунного света, если они... Конечно, когда затмение началось, испуганные караибы готовы были отдать белому человеку всё, лишь бы тот оставил Луну.

Теория образования лунных кратеров. Как образовались лунные кратеры? Этот вопрос стал причиной длительной дискуссии. Речь идёт о борьбе между сторонниками двух гипотез происхождения лунных кратеров: вулканической и метеоритной.

Согласно вулканической гипотезе, которую выдвинул в 80-х гг. XVIII в. немецкий астроном Иоганн Шретер, кратеры возникли в результате грандиозных извержений на поверхности Луны. В 1824 г. его соотечественник Франц фон Груйтуйзен предложил метеоритную теорию, объяснявшую образование кратеров падением метеоритов. По его мнению, при таких ударах происходит продавливание лунной поверхности.

Лишь через 113 лет, в 1937 г., российский студент Кирилл Петрович Станюкович (будущий доктор наук и профессор) доказал, что при ударах метеоритов с космическими скоростями происходит взрыв, в результате которого испаряется не только метеорит, но и часть пород в месте удара.


Схема образования ударного кратера


В 1959 г. российская исследовательница Надежда Николаевна Сытинская предложила метеорно-шлаковую теорию формирования лунного грунта. Согласно этой теории, тепло, передаваемое при ударе метеорита наружному покрову (реголиту) Луны, расходуется не только на его расплавление и испарение, но и на образование шлаков, которые проявляют себя в цветовых особенностях поверхности Луны. В справедливости метеорно-шлаковой теории смогли убедиться американские астронавты Нил Армстронг и Эдвин Олдрин, впервые ступившие на лунную поверхность 21 июля 1969 г. Теперь метеорно-шлаковая теория является общепринятой.

Фазы Луны. Известно, что луна меняет свой вид. Сама она не излучает света, поэтому на небе видна только освещённая Солнцем ее поверхность - дневная сторона, которой равно 0.073, то есть она отражает в среднем лишь 7.3% световых лучей Солнца. Луна посылает на Землю в 465000 раз меньше света, чем Солнце. Ее звездная величина в полнолунии -12,5. Перемещаясь по небу с запада на восток, Луна меняет свой вид – фазу, за счет изменения положения относительно Солнца и Земли. Выделяют четыре фазы Луны: новолуние, первая четверть, полнолуние и последняя четверть. В зависимости от фаз, количество света, отражаемого Луной, уменьшается гораздо быстрее, чем площадь освещенной части Луны, так что когда Луна находится в четверти, и мы видим половину ее диска светлой, она посылает нам не 50 %, а лишь 8 % света от полной Луны.

В новолуние Луну не разглядеть даже в телескоп. Она располагается в том же направлении, что и Солнце (только выше или ниже его), и повернута к Земле неосвещённым полушарием. Через один-два дня, когда Луна удалится от Солнца, узкий серп можно будет наблюдать за несколько минут до её захода в западной стороне неба на фоне вечерней зари. Первое появление лунного серпа после новолуния греки называли «неомения» («новая Луна»). Этот момент у древних народов считался началом лунного месяца.


Диаграмма фаз Луны


Иногда в течение нескольких дней до и после новолуния удаётся заметить пепельный свет Луны. Это слабое свечение ночной части лунного диска не что иное, как солнечный свет, отражённый Землёй на Луну. Когда лунный серп увеличивается, пепель-ный свет бледнеет и становится незаметным.

Всё дальше и дальше влево от Солнца уходит Луна. Серп её с каждым днём растёт, оставаясь выпуклым вправо, к Солнцу. Через 7 суток и 10 часов после новолуния наступает фаза, именуемая первой четвертью. За это время Луна удалилась от Солнца на 90°. Теперь солнечные лучи освещают только правую половину лунного диска. После захода Солнца Луна находится в южной стороне неба и заходит около полуночи. Продол-жая перемещаться от Солнца всё дальше к востоку, Луна с вечера появляется на восточной стороне неба. Заходит она уже после полуночи, причём каждые сутки всё позднее и позднее.

Когда наш спутник оказывается в стороне, противоположной Солнцу (на угловом расстоянии 180° от него), наступает полнолуние. Полная Луна светит всю ночь. Она восходит с вечера и заходит под утро. Спустя 14 суток и 18 часов с момента новолуния Луна начинает приближаться к Солнцу справа. Освещённая доля лунного диска уменьшается. Всё позднее восходит Луна над горизонтом и к утру уже не заходит. Расстояние между Луной и Солнцем уменьшается со 180° до 90°. Опять становится видна только половина лунного диска, но это уже левая его часть. Наступает последняя четверть. А через 22 дня и 3 часа после новолуния Луна в последней четверти восходит около полуночи и светит в течение всей второй половины ночи. К восходу Солнца она оказывается в южной стороне неба.

Ширина лунного серпа продолжает уменьшаться, а сама Луна постепенно приближается к Солнцу с правой (западной) стороны. Бледный серп появляется на восточном небосклоне под утро, с каждыми сутками всё позднее. Опять виден пепельный свет ночной Луны. Угловое расстояние между Луной и Солнцем уменьшается от 90° до 0°. Наконец Луна догоняет Солнце и снова становится невидимой. Начинается следующее новолуние. Лунный месяц закончился. Прошло 29 дней 12 часов 44 минуты 2,8 секунды, или почти 29,6 суток.


Последовательные фазы Луны


Промежуток времени между последовательными одноимёнными фазами Луны называется синодическим месяцем (от греч. «синодос» - «соединение»). Таким образом, синодический период связан с видимым на небе расположением небесного тела (в данном случае Луны) относительно Солнца. Свой путь вокруг Земли относительно звёзд Луна совершает за 27 суток 7 ч 43 мин 11,5 с. Этот период называется сидерическим (от лат. sideris - «звезда»), или звёздным месяцем. Таким образом, сидерический месяц немного короче синодического. Почему? Рассмотрим движение Луны от новолуния до новолуния. Луна, совершив оборот вокруг Земли за 27,3 суток, возвращается на своё место среди звёзд. Но Солнце за это время уже переместилось по эклиптике к востоку, и только когда Луна догонит его, наступит следующее новолуние. А для этого ей потребуется ещё примерно 2,2 суток.

Путь Луны по небу проходит недалеко от эклиптики, поэтому полная Луна поднимается из-за горизонта при заходе Солнца и приближённо повторяет путь, пройденный им за полгода до этого. Летом Солнце поднимается на небе высоко, полная же Луна не удаляется далеко от горизонта. Зимой Солнце стоит низко, а Луна, напротив, поднимается высоко и долго освещает зимние пейзажи, придавая снегу синий оттенок.

Внутреннее строение Луны. Плотность Луны равна 3340 кг/м3 - как у земной мантии. Это значит, что наш спутник или не имеет плотного железного ядра, или оно очень маленькое.
Более детальные сведения о внутреннем строении Луны получены в результате сейсмических экспериментов. Они начали проводиться с 1969 г., после посадки на Луну американского космического аппарата . Приборы последующих четырёх экспедиций « , и » образовали сейсмическую сеть из четырёх стан-ций, которая работала до 1 октября 1977 г. Ею были зарегистрированы сейсмические толчки трёх типов: тепловые (растрескивание наружной кромки Луны из-за резких перепадов температуры при смене дня и ночи); лунотрясения в литосфере с очагом на глубине не более 100 км; глубокофокусные лунотрясения, очаги которых расположены на глубинах от 700 до 1100 км (источником энергии для них служат лунные приливы).

Полные выделения сейсмической энергии на Луне за год примерно в миллиард раз меньше, чем на Земле. Это не удивительно, так как тектоническая активность на Луне закончилась несколько миллиардов лет назад, а на нашей планете продолжается и по сей день.


Внутреннее строение Луны


Для выявления структуры подповерхностных слоев Луны были проведены активные сейсмические эксперименты: сейсмические волны возбуждались падением отработанных частей космических аппаратов «Аполлон» или искусственными взрывами на поверхности Луны. Как выяснилось, толщина реголитового покрова колеблется в пределах 9 - 12м. Под ним располагается слой толщиной от нескольких десятков до сотен метров, вещество которого состоит из выбросов, возникших при образовании больших кратеров. Далее до глубины 1 км идут слои из базальтового материала.

По сейсмическим данным мантию Луны можно разделить на три составляющие: верхнюю, среднюю и нижнюю. Толщина верхней мантии - около 400 км. В ней сейсмические скорости слабо убывают с глубиной. На глубинах примерно 500-1000 км сейсмические скорости в основном остаются постоянными. Нижняя мантия расположена глубже 1100 км, где скорости сейсмических волн растут.

Одной из сенсаций лунных исследований стало открытие мощной коры толщиной 60-100 км. Это указывает на существование в прошлом на Луне так называемого океана магмы, в недрах которого происходило выплавление и образование коры в течение первых 100 млн лет её эволюции. Можно сделать вывод, что Луна и Земля имели сходное происхождение. Однако тектонический режим Луны отличается от режима тектоники плит, характерного для Земли. Выплавляющаяся базальтовая магма идёт на наращивание лунной коры. Именно поэтому она такая толстая.

Гипотезы происхождения Луны. Первую гипотезу о происхождении нашего спутника предложил в 1879 г. английский астроном и математик Джордж Дарвин, сын известного естествоиспытателя Чарльза Дарвина. Согласно этой гипотезе, Луна отделилась когда-то от Земли, пребывавшей в то время в жидком состоянии. Изучение эволюции лунной орбиты действительно указывало на то, что некогда Луна была гораздо ближе к Земле, чем теперь.

Изменение взглядов на прошлое Земли и критика гипотезы Дарвина российским геофизиком Владимиром Николаевичем Лодочниковым заставили ученых начиная с 1939 г. искать другие пути образования Луны. В 1962 г. американский геофизик Гарольд Юри предположил, что Земля захватила уже готовую, сформировавшуюся Луну. Однако помимо весьма малой вероятности такого события против гипотезы Юри говорило сходство состава Луны и земной мантии.
В 60-е гг. российская исследовательница Евгения Леонидовна Рускол, развивая идеи своего учителя, академика Отто Юльевича Шмидта, построила теорию совместного образования Земли и Луны как двойной планеты из облака допланетных тел, окружавшего когда-то Солнце. Эту теорию поддержали многие западные учёные.

Существует также «ударная» теория образования Луны. Согласно этой теории Луна образовалось в результате катастрофического столкновения Земли в далеком прошлом с планетой размером с Марс.



Схема и художественное представление ударной теории образования Луны

Лучевая структура лунных кратеров. Со времени первых телескопических наблюдений Луны астрономы обратили внимание на то, что от некоторых лунных кратеров строго по радиусам расходятся светлые полосы, или лучи. Центрами светлых лучей являются кратеры Коперник, Кеплер, Аристарх. Но самую мощную систему лучей имеет кратер Тихо: некоторые из его лучей протянулись на 2000 км.

Что за светлое вещество образует лучи лунных кратеров? И откуда оно взялось? В 1960 г., когда не был ещё завершён спор о происхождении самих лунных кратеров, российские учёные Кирилл Петрович Станюкович и Виталий Александрович Бронштэн, оба горячие сторонники метеоритной гипотезы их образования, предложили следующее объяснение природы лучевых систем.


Кратер Тихо


Удар крупного метеорита или небольшого астероида о поверхность Луны сопровождается взрывом: кинетическая энергия ударяющего тела мгновенно переходит в тепло. Часть энергии затрачивается на выброс лунного вещества под разными углами. Значительная часть выброшенного вещества улетает в космос, преодолевая силу притяжения Луны. Но вещество, выброшенное под небольшими углами к поверхности и с не очень большими скоростями, падает обратно на Луну. Эксперименты с земными взрывами показывают, что выбросы вещества происходят струями. А поскольку таких струй должно быть несколько, получается система лучей.

Но почему они светлые? Дело в том, что лучи состоят из мелко раздробленного вещества, которое всегда светлее, чем плотное вещество того же состава. Это установили опыты профессора Всеволода Васильевича Шаронова и его сотрудников. И когда первые астронавты ступили на поверхность Луны и взяли вещество лунных лучей для исследования, эта гипотеза подтвердилась.

Исследование Луны космическими апаратами. До полетов космических апаратов о обратной стороне Луны и о составе ее недр ничего не было известно, поэтому неудивительно, что первый полет космического аппарата выше околоземной орбиты был направлен к Луне. Эта честь принадлежит советскому космическому аппарату , запуск которого был осуществлен 2 января 1958 года. В соответствии с программой полета через несколько дней он прошел на расстоянии 6000 километров от поверхности Луны. Позднее в том же году, в середине сентября подобный аппарат серии "Луна" достиг поверхности естественного спутника Земли.


Аппарат "Луна-1"


Еще через год, в октябре 1959 года автоматический аппарат , оснащенный аппаратурой для фотографирования, провел съемку обратной стороны Луны (около 70 % поверхности) и передал ее изображение на Землю. Аппарат имел систему ориентации с датчиками Солнца и Луны и реактивными двигателями, работавшими на сжатом газе, систему управления и терморегулирования. Его масса 280 килограмм. Создание "Луны-3" было техническим достижением для того времени, принесло информацию об обратной стороне Луны: обнаружены заметные различия с видимой стороной, прежде всего отсутствие протяженных лунных морей.

В феврале 1966 года аппарат доставил на Луну автоматическую лунную станцию, совершившую мягкую посадку и передавшую на Землю несколько панорам близлежащей поверхности - мрачной каменистой пустыни. Система управления обеспечивала ориентацию аппарата, включение тормозной ступени по команде от радиолокатора на высоте 75 километров над поверхностью Луны и отделение станции от нее непосредственно перед падением. Амортизация обеспечивалась надувным резиновым баллоном. Масса "Луны-9" около 1800 килограмм, масса станции около 100 килограмм.

Следующим шагом в советской лунной программе были автоматические станции , , предназначенные для забора грунта с поверхности Луны и доставки его образцов на Землю. Их масса была около 1900 килограмм. Помимо тормозной двигательной установки и четырехлапого посадочного устройства, в состав станций входили грунтозаборное устройство, взлетная ракетная ступень с возвращаемым аппаратом для доставки грунта. Полеты состоялись в 1970, 1972 и 1976 годах, на Землю были доставлены небольшие количества грунта.

Еще одну задачу решали , (1970, 1973 года). Они доставили на Луну самоходные аппараты - луноходы, управляемые с Земли по стереоскопическому телевизионному изображению поверхности. прошел путь около 10 километров за 10 месяцев, - около 37 километров за 5 мес. Кроме панорамных камер на луноходах были установлены: грунтозаборное устройство, спектрометр для анализа химического состава грунта, измеритель пути. Массы луноходов 756 и 840 кг.


Макет аппарата "Луноход-2"


Космические аппараты разрабатывались для получения снимков во время падения, начиная с высоты около 1600 километров до нескольких сот метров над поверхностью Луны. Они были оснащены шестью телевизионными камерами. Аппараты при посадке разбивались, поэтому получаемые изображения передавались сразу же, без записи. Во время трех удачных полетов были получены обширные материалы для изучения морфологии лунной поверхности. Съемки "Рейнджеров" положили начало американской программе фотографирования планет.

Конструкция аппаратов "Рейнджер" сходна с конструкцией первых аппаратов "Маринер", которые были запущены к Венере в 1962 году. Однако дальнейшее конструирование лунных космических аппаратов не пошло по этому пути. Для получения подробной информации о лунной поверхности использовались другие космические аппараты - . Эти аппараты с орбит искусственных спутников Луны фотографировали поверхность с высоким разрешением.


"Лунар Орбитер-1"


Одна из целей полетов состояла в получении высококачественных снимков с двумя разрешениями, высоким и низким, с целью выбора возможных мест посадки аппаратов и "Аполлон" с помощью специальной системы фотокамер. Снимки проявлялись на борту, сканировались фотоэлектрическим способом и передавались на Землю. Число снимков ограничивалось запасом пленки (на 210 кадров). В 1966-1967 годах было осуществлено пять запусков "Лунар орбитер" (все успешные). Первые три "Орбитера" были выведены на круговые орбиты с небольшим наклонением и малой высотой; на каждом из них проводилась стереосъемка избранных участков на видимой стороне Луны с очень высоким разрешением и съемка больших участков обратной стороны с низким разрешением. Четвертый спутник работал на гораздо более высокой полярной орбите, он вел съемку всей поверхности видимой стороны, пятый, последний "Орбитер" вел наблюдения тоже с полярной орбиты, но с меньших высот. "Лунар орбитер-5" обеспечил съемку с высоким разрешением многих специальных целей на видимой стороне, большей частью на средних широтах, и съемку значительной части обратной с малым разрешением. В конечном счете съемкой со средним разрешением была покрыта почти вся поверхность Луны, одновременно шла целенаправленная съемка, что имело неоценимое значение для планирования посадок на Луну и ее фотогеологических исследований.

Дополнительно было проведено точное картирование гравитационного поля, при этом были выявлены региональные концентрации масс (что важно и с научной точки зрения, и для целей планирования посадок) и установлено значительное смещение центра масс Луны от центра ее фигуры. Измерялись также потоки радиации и микрометеоритов.

Аппараты "Лунар орбитер" имели систему трехосной ориентации, их масса составляла около 390 килограммов. После завершения картографирования эти аппараты разбивались о лунную поверхность, чтобы прекратить работу их радиопередатчиков.

Полеты космических аппаратов "Сервейор", предназначавшихся для получения научных данных и инженерной информации (такие механические свойства, как, напри-мер, несущая способность лунного грунта), внесли большой вклад в понимание природы Луны, в подготовку посадок аппаратов "Аполлон".

Автоматические посадки с использованием последовательности команд, управляемых радаром с замкнутым контуром, были большим техническим достижением того времени. "Сервейоры" запускались с помощью ракет "Атлас-Центавр" (криогенные верхние ступени "Атлас" были другим техническим успехом того времени) и выводились на перелетные орбиты к Луне. Посадочные маневры начинались за 30 - 40 минут до посадки, главный тормозной двигатель включался радаром на расстоянии около 100 километров до точки посадки. Конечный этап (скорость снижения около 5 м/с) проводился после окончания работы главного двигателя и сброса его на высоте 7500 метров. Масса "Сервейора" при запуске составляла около 1 тонны и при посадке - 285 килограмм. Главный тормозной двигатель представлял собой твердотопливную ракету массой около 4 тонн. Космический аппарат имел трехосную систему ориентации.


"Сервейор-3" на Луне


Прекрасный инструментарий включал две камеры для панорамного обзора местности, небольшой ковш для рытья траншеи в грунте и (в последних трех аппаратах) альфа-анализатор для измерения обратного рассеяния альфа - частиц с целью определения элементного состава грунта под посадочным аппаратом. Ретроспективно результаты химического эксперимента многое прояснили в природе поверхности Луны и ее истории. Пять из семи запусков "Сервейоров" были успешными, все опустились в экваториальной зоне, кроме последнего, который сел в районе выбросов кратера Тихо на 41° ю.ш.

Пилотируемые космические аппараты "Аполлон" были следующими в американской программе исследований Луны. В феврале 1966 года “Аполлон” был испытан в беспилотном варианте. Однако то, что произошло 27 января 1967 года, помешало успешному проведению программы. В этот день астронавты Э. Уайт, Р. Гаффи, В. Гриссом погибли при вспышке пламени во время тренировке на Земле. После расследования причин испытания возобновились и усложнились. В декабре 1968 года “Аполлон - 8 (еще без лунной кабины) был выведен на селеноцентрическую орбиту с последующим возвращением в атмосферу Земли со второй космической скоростью. Это был пилотируемый полет вокруг Луны. Снимки помогли уточнить место будущей посадки на Луну людей. 16 июля “Аполлон - 11” стартовал к Луне и 19 июля вышел на лунную орбиту. 21 июля 1969 на Луне впервые высадились люди - американские астронавты Н. Армстронг и Э. Олдрин, доставленные туда космическим кораблем "Аполлон-11. Космонавты доставили на Землю несколько сотен килограммов образцов и провели на Луне ряд исследований: измерения теплового потока, магнитного поля, уровня радиации, интенсивности и состава солнечного ветра. Оказалось, что тепловой поток из недр Луне примерно втрое меньше, чем из недр Земли. В породах Луны обнаружена остаточная намагниченность, что указывает на существование у Луны в прошлом магнитного поля. Это было выдающиеся достижение в истории освоение космического пространства - впервые человек достиг поверхности другого небесного тела и пробыл на нем более двух часов. Вслед за полетом корабля “Аполлон - 11” к Луне на протяжении 3.5 - х лет было направлено шесть экспедиций (“Аполлон - 12” - “Аполлон - 17”), пять из которых прошли вполне успешно. На корабле “Аполлон - 13” из - за аварии на борту пришлось изменить программу полета, и вместо посадки на Луну был сделан ее облет и возвращение на Землю. Всего на Луне побывало 12 астронавтов, некоторые пробыли на Луне несколько суток, в том числе до 22 часов вне кабины, проехали на самоходном аппарате несколько десятков километров. Ими был выполнен довольно большой объем научных исследований, собрано свыше 380 килограммов образцов лунного грунта, изучением которых занимались лаборатории США и других стран. Работы над программой полетов на Луну велись и в СССР, но в силу нескольких причин не были доведены до конца.


"Аполлон-11" на Луне


После "Аполлона" пилотированные полеты на Луну не проводились. Ученым пришлось довольствоваться продолжением обработки данных от автоматических и пилотируемых полетов в 1960 - е и 1970 - е годы. Некоторые из них предвидели эксплуатацию лунных ресурсов в будущем и направили свои усилия на разработку процессов, которые смогли бы превратить лунный грунт в материалы, пригодные для строительства, для производства энергии и для ракетных двигателей. При планировании возвращения к исследованиям Луны без сомнения найдут применение как автоматические, так и пилотируемые космические аппараты.

В 90-х годах к Луне были отправлены две небольших автоматических миссии. В течение 71 дня в 1994 году на орбите Луны находилась миссия , тестируя сенсоры для космической системы противоракетной обороны и проводя картографирование контуров и цвета Луны. В ходе миссии на южном полюсе был открыт ударный котлован Айткен - дыра в Луне поперечником 2,6 тыс. км и глубиной около 13 км. Удар был настолько сильным, что, по-видимому, прорыл всю кору до самой мантии. Цветовые данные, полученные Клементин, совместно с информацией об образцах, полученных миссиями Аполлон, позволяют создать карту регионального состава - первую точную "каменную карту" Луны. Наконец, Клементин дала нам тонкий намёк на то, что сплошные тёмные области возле южного полюса Луны могут содержать водяной лёд, принесённый на протяжении миллионов лет ударами комет.

Вскоре после Клементин аппарат производил картографирование поверхности Луны с орбиты в течение своей миссии в 1998-1999 годах. Эти данные совместно с полученными в ходе миссии Клементин дали учёным глобальные композиционные карты, показывающие сложное строение коры Луны. Также Лунар Проспектор впервые произвёл картографирование поверхностных магнитных полей Луны. Данные показаи, что Декарт (место посадки Аполлона-16) - одна из наиболее сильных магнитных зон Луны, что объясняет поверхностные измерения, сделанные Джоном Янгом в 1972 году. Миссия также обнаружила обширные запасы водорода на обоих полюсах, добавив оживления в спорах о природе лунного льда.

Сейчас человечество готовится к возвращению на Луну. Производятся и планируются международные миссии на лунную орбиту с целью составить общие карты непревзойдённого качества. Планируются мягкие посадки на Луну, в частности, в загадочных полярных регионах, для получения новых изображений поверхности, изучения отложений и необычной среды этих областей. В конечном итоге люди вернутся на Луну. И в этот раз целью будет не доказать, что мы можем это (как это было в случае Аполлона), а научиться использовать Луну для поддержки новых и расширяющихся космических возможностей. На Луне человечество получит навыки, необходимые для жизни и работы в других мирах. Мы используем эти знания и технологии, чтобы открыть солнечную систему для исследования человеком.


Лунная колония глазами художника


История Луны и процессы на ней интересны сами по себе, но они также тонко изменили взгляд на наше собственное прошлое. Одним из наиболее значительных открытий 80-х годов ХХ века был мощный удар, произошедший 65 миллионов лет назад на территории современной Мексики, который привёл к вымиранию динозавров, что позволило существенно развиться млекопитающим. Это открытие стало возможно благодаря опознанию и интерпретации химических и физических признаков высокоскоростного удара и появилось непосредственно из исследований ударных пород и форм рельефа, произведённых в рамках миссии Аполлон. Сегодня учёные полагают, что подобные удары вызвали много, если не преобладающее большинство глобальных вымираний в истории жизни на Земле. Луна содержит "запись" таких событий, и учёные смогут подробно их изучить при возвращении на Луну.

Отправляясь на Луну, мы сможем лучше понять "работу" Вселенной и наше собственное происхождение. Изучение Луны изменило представление о столкновении твёрдых тел. Этот процесс, считавшийся раньше редким и необычным, теперь рассматривается как фундаментальный в происхождении и эволюции планет. Возвращаясь на Луну, мы предвкушаем возможность узнать ещё больше о нашем прошлом и, что не менее важно, краем глаза заглянуть в наше будущее.

Интересные факты.

  • Луна изображается на гербах и флагах таких стран: Лаос, Монголия, Палау, флаг саамов, флаг шанов (Мьянма). Луна в виде полумесяца изображена на флагах и гербах таких стран: Османская империя, Турция, Тунис, Алжир, Мавритания, Азербайджан, Узбекистан, Пакистан, Турецкая республика Северного Кипра.
  • У мусульман раз в году рождение новой Луны знаменует начало месяца поста - Рамадана.
  • Всем известны первые произнесенные на луне слова Нейлом Армстронгом, но никто не знает о последних, их произнес Юджин Сернан 11 декабря 1972 года: "Сегодняшний вызов Америки определил судьбу людей завтра".
  • Диаметр Луны составляет 3476 км и почти равен ширине Австралии, а общая площадь Луны в 4 раза меньше Европы.
  • На Луне можно подпрыгнуть в 6 раз выше, чем на Земле. Это происходит потому, что сила тяжести на Луне составляет всего 1/6 силы гравитации Земли. Однако не думайте, что вы действительно будете прыгать на Луне так высоко – ведь на вас будет тяжелый защитный скафандр.
  • При затмении Солнца тень, отбрасываемая Луной, преодолевает до двух километров в секунду.

Один ли спутник у Земли?

Во все времена люди считали, что у Земля есть спутник - Луна. И только недавно появились свидетельства тому, что Луна не единственный природный сателлит нашей планеты В мифах древности можно было найти информацию о падении на Землю некоего космического тела Некоторые исследователи видят в этом событии разгадку тайны легендарной Атлантиды

На севере Аргентины расположен район Кампо-дель-Сьело - «Небесное поле » Это название напоминает о древней индейской легенде, которая рассказывает о том, как на этом самом месте упал с неба загадочный огненный шар Старые хроники утверждают, что испанские конкистадоры нашли на Кампо-дель-Сьело громадный кусок железа, который использовали для изготовления мечей и копий.

В 1576 году испанец Эрман Мексика де Мираваль среди болотистых низин Гран-Чако, в пятистах милях к северу от Санта-Фе, наткнулся на большую железную глыбу После этого предприимчивый испанец еще четырежды наведывался к глыбе за железом и отбивал от нее небольшие фрагменты для различных нужд Пятую и последнюю экспедицию к железной глыбе организовал дон Рубин де Селис в 1783 году Он оценил массу объекта приблизительно в пятнадцать тонн Подробного описания этой странной глыбы не сохранилось, и больше ее никто не видел, хотя попытки отыскать ее предпринимались неоднократно, и до сих пор мечт отыскать таинственный объект будоражит воображение искателей приключений.

В 1803 году в окрестностях Кампо-дель-Сьело был случайно обнаружен метеорит весом около тонны Самый большой его фрагмент весом около 635 килограмм в 1813 году доставили в Буэнос-Айрес, а позднее его приобрел англичанин сэр Вудбайн Дэриш и подарил Британскому музею Эта глыба космического железа до сих пор покоится на постаменте перед входом в музей Часть его поверхности специально отшлифована, чтобы можно было видеть структуру металла с так называемыми «фигурами Видманштеттена», свидетельствующими о внеземном происхождении объекта Остальные фрагменты метеорита утрачены.

Между тем в окрестностях Кампо-дель-Сьело до сих пор продолжают находить метеориты и странные железные фрагменты массой от нескольких килограммов до многих тонн Самый большой весил 33,4 тонны Он был найден в 1980 году около местечка Ганседо Американский исследователь метеоритов Роберт Хаг хотел приобрести этот фрагмент, чтобы вывезти его в США, но аргентинские власти воспротивились этому На сегодняшний день этот метеорит считается вторым по величине среди всех обнаруженных на Земле метеоритов - после так называемого «метеорита Хоба», весящего около 60 тонн.

Необычайно большое количество метеоритов, найденных на сравнительно небольшой площади, свидетельствует о том, что несколько тысяч лет тому назад над Землей пролился целый «метеоритный дождь» Свидетельством тому, кроме находок самих железных тел, является большое количество кратеров в районе Кампо-дель-Сьело «Метеоритное поле» имеет форму эллипса, вытянутого на 17 километров вдоль и на 6 километров поперек Крупнейшим кратером является Лагуна-Негра он имеет диаметр 115 метров, а глубину - более двух метров.

Легендами и находками Кампо-дель-Сьело в 1961 году заинтересовался американский ученый из Колумбийского университета У Кессиди В результате предпринятых им исследований было обнаружено большое количество мелких металлических метеоритов, так называемых гексадеритов, состоящих практически из химически чистого железа При этом ученый обратил внимание на странный факт обычно при взрыве крупного метеорита в атмосфере его обломки падают на Землю, рассыпаясь эллипсом с максимальным поперечником около 1600 метров А на Кампо-дель-Сьело длина поперечника составляет 17 километров.

Опубликованные предварительные выводы исследований Кессиди вызвали сенсацию К нему немедленно явились сотни добровольных помощников В результате их поисков новые фрагменты метеоритного железа были обнаружены даже на удалении 75 километров от «Небесного поля».

Окончательный вывод, к которому пришла экспедиция Кессиди, был таким:

Огромный метеорит упал на Землю не с околосолнечной орбиты. До падения это небесное тело обращалось по эллиптической околоземной орбите, постепенно сближаясь с Землей.То есть в течение долгого времени это тело являлось вторым естественным спутником Земли!

Согласно этой гипотезе, «Луна-2 » постепенно сближалась с Землей под действием силы земного притяжения, пока не пересекла так называемую «границу Роше» и не распалась на части. Эти фрагменты еще какое-то время обращались на околоземной орбите, а затем вошли в атмосферу и по очереди начали падать на поверхность Земли. Усилиями Кессиди гексадериты были найдены даже на расстоянии около тысячи километров к западу от Кампо-дель-Сьело, на территории Чили.

Когда же произошла эта космическая катастрофа? Обнаруженный на ее месте обугленный пень дерева - результат гигантского пожара, вызванного метеоритной бомбардировкой, - имеет возраст около 5800 лет.

… Еще каких-то шесть-семь тысяч лет назад в ночном небе над Землей можно было видеть две Луны. А потом… Потом, вероятно, и случилась та самая катастрофа, о которой рассказывают легенды и мифы многих народов мира: «Звезды падали с небес, перечеркивая небосвод огненным шлейфом, земля рокотала, дрожала и трескалась, сотрясаемая толчками. Мир рушился». Последствиями этой катастрофы стали смещение земной оси на 30 градусов, тектонические сдвиги и, возможно, затопление крупных участков суши. И может быть, именно на равнине Кампо-дель-Сьело таится разгадка тайны Атлантиды?

Есть веские причины считать, что люди не только смогут выжить на Европе, спутнике Юпитера, но и найдут там уже существующую жизнь. Европа покрыта толстой ледяной коркой, однако многие ученые склонны считать, что под ней находится настоящий океан из жидкой воды. Кроме того, наличие твердого внутреннего ядра у Европы добавляет шансов на наличие правильной среды для поддержки жизни, будь то обычных микробов или, возможно, даже более сложных организмов.

Изучать Европу на предмет наличия условий для существования жизни и самой жизни определенно стоит. Как-никак это многократно увеличит шансы возможной колонизации этого мира. NASA хочет проверить, имеет ли вода Европы какую-то связь с ядром планеты и производится ли в результате этой реакции тепло и водород, как у нас на Земле. В свою очередь, исследование различных окислителей, которые могут присутствовать в ледяной корке планеты, укажет на уровень производимого кислорода, а также то, сколько его находится ближе к океанскому дну.

Есть предпосылки считать, что NASA займется плотным изучением Европы и попытками туда полететь где-то к 2025 году. Именно тогда мы и узнаем, верны ли те теории, которые связывают с этим ледяным спутником. Изучение на месте также может показать наличие активных вулканов под ледяной поверхностью, что, в свою очередь, тоже повысит шансы жизни на этом спутнике. Ведь благодаря этим вулканам в океане могут накапливаться важнейшие минералы.

Титан

Несмотря на то, что Титан, один из спутников Сатурна, находится во внешней границе Солнечной системы, этот мир является одним из наиболее интересных мест для человечества и, возможно, одним из кандидатов на будущую колонизацию.

Конечно же, для дыхания здесь потребуется использование специального оборудования (атмосфера непригодна для нас), однако необходимости в использовании специальных скафандров с регулируемым давлением здесь нет. Однако носить специальную защитную одежду, конечно, все же придется, так как здесь очень низкая температура, нередко опускающаяся до -179 градусов Цельсия. Сила гравитации на этом спутнике чуть ниже уровня гравитации на Луне, а значит ходить по поверхности будет относительно легко.

Придется, правда, серьезно подумать над тем, как выращивать урожай, и озаботиться вопросами искусственного освещения, так как солнечного света на Титан попадает всего от 1/300 до 1/1000 от земного уровня. Во всем виноваты плотные облака, которые, тем не менее, защищают спутник от чрезмерных уровней излучения.

На Титане нет воды, но есть целые океаны из жидкого метана. В связи с этим, некоторые ученые продолжают спорить над тем, могла бы ли в таких условиях образоваться жизнь. Как бы там ни было, на Титане есть что исследовать. Здесь имеется бесчисленное количество метановых рек и озер, большие горы. Кроме того, здесь должны быть просто потрясающие виды. Ввиду относительной близости Титана к Сатурну, планета на небе спутника (в зависимости от облачности) занимает до одной трети небосклона.

Миранда

Несмотря на то, что крупнейшим спутником Урана является Титания, Миранда, самая маленькая из пяти лун планеты, наиболее подходит для колонизации. На Миранде есть несколько очень глубоких каньонов, глубже, чем Большой каньон на Земле. Эти места могут стать идеальным местом для посадки и установки базы, которая будет защищена от внешнего воздействия суровой среды и особенно от радиоактивных частиц, производимых магнитосферой самого Урана.

На Миранде есть лед. Астрономы и исследователи подсчитали, что он составляет примерно половину состава этого спутника. Как и на Европе, есть вероятность наличия воды на спутнике, которая скрыта под ледяной шапкой. Наверняка это неизвестно, и мы этого не узнаем, пока не подберемся ближе к Миранде. Если на Миранде все же есть вода, то это говорило бы о серьезной геологической активности на спутнике, так как он находится слишком далеко от Солнца и солнечный свет не состоянии поддерживать здесь воду в жидкой форме. Геологическая активность, в свою очередь, все это бы объяснила. Несмотря на то, что это всего лишь теория (и, скорее всего, маловероятная), близкое расположение Миранды к Урану и его приливным силам может вызывать эту самую геологическую активность.

Есть ли здесь вода в жидкой форме или нет, но если мы установим на Миранде колонию, то очень низкая гравитация спутника позволит спуститься в глубокие каньоны без фатальных последствий. В общем, здесь тоже будет чем заняться и что исследовать.

Энцелад

Согласно некоторым исследователям, Энцелад, один из спутников Сатурна, может не только стать отличным местом для колонизации и наблюдения за планетой, но и является чуть ли не самым вероятным местом, которое уже поддерживает жизнь.

Энцелад покрыт льдом, однако наблюдения зондами с космоса показали геологическую активность на луне и в частности вырывающиеся с ее поверхности гейзеры. Космический аппарат «Кассини» собрал образцы и определил наличие жидкой воды, азота и органического углерода. Эти элементы, а также тот источник энергии, который выбросил их в космос, являются важными «кирпичиками жизни». Поэтому следующим шагом для ученых будет обнаружение признаков более сложных элементов и, возможно, организмов, которые могут скрываться под ледяной поверхностью Энцелада.

Исследователи считают, что лучшим местом для установки колонии будут зоны, рядом с которыми были замечены эти гейзеры, — огромные разломы на поверхности ледяной шапки южного полюса. Здесь замечена весьма необычная тепловая активность, эквивалентная работе примерно 20 угольных электростанций. Другими словами, для будущих колонистов здесь имеется подходящий источник тепла.

На Энцеладе имеется множество кратеров и разломов, только и ждущих, когда их начнут изучать. К сожалению, атмосфера спутника очень разряжена, а низкая гравитация может создать некоторые проблемы в освоении этого мира.

Харон

Космический аппарат NASA «Новые горизонты» после встречи с Плутоном отправил на Землю потрясающие изображения карликовой планеты и ее крупнейшего спутника Харона. Эти изображения вызвали жаркие споры в научном сообществе, которое теперь пытается определить: геологически активен или нет этот спутник. Оказалось, что поверхность Харона (как и Плутона) гораздо моложе, чем предполагалось ранее.

Несмотря на то, что в поверхности Харона имеются трещины, кажется, эта луна весьма эффективно избегает столкновения с астероидами, так как на ней очень мало ударных кратеров. Сами трещины и разломы очень похожи на те, которые остаются от течения раскаленной лавы. Такие же трещины были найдены на Луне и являются идеальным местом для установки колонии.

Считается, что Харон обладает очень разряженной атмосферой, что также может являться индикатором геологической активности.

Мимас

Мимас нередко называют «Звездой смерти». Вполне возможно, что под ледяной шапкой этого спутника может скрываться океан. И несмотря на общий зловещий вид этой луны, она, вероятно, действительно может подходить для поддержания жизни. Наблюдения космического зонда «Кассини» показали, что Мимас слегка раскачивается на своей орбите, что могло бы говорить о геологической активности под его поверхностью.

И хотя ученые очень осторожны в своих предположениях, других следов, которые указывали бы на геологическую активность спутника, обнаружено не было. Если на Мимасе будет обнаружен океан, то эта луна одной из первых должна быть рассмотрена в качестве наиболее подходящего кандидата для установки здесь колонии. Приблизительные расчеты указывают на то, что океан может скрываться на глубине около 24-29 километров под поверхностью.

Если необычное орбитальное поведение никак не связано с наличием жидкой воды под поверхностью этого спутника, тогда, вероятнее всего, все дело в его деформированном ядре. И винить в этом стоит сильный гравитационный пул колец Сатурна. Как бы там ни было, наиболее очевидным и самым надежным способом узнать, что же здесь происходит, является посадка на поверхность и проведение нужных замеров.

Тритон

Изображения и данные, полученные с космического аппарата «Вояджер-2» в августе 1989 года, показали, что поверхность крупнейшего спутника Нептуна, Тритона, состоит из камней и азотного льда. Кроме того, данные намекнули на то, что под поверхностью спутника может находиться жидкая вода.

Хотя Тритон обладает атмосферой, она настолько разряжена, что на поверхности спутника от нее нет никакого толка. Находиться здесь без особо защищенного скафандра — смерти подобно. Средняя температура на поверхности Тритона составляет -235 градусов Цельсия, что делает эту луну самым холодным космическим объектом в известной Вселенной.

Тем не менее для ученых Тритон очень интересен. И однажды они хотели бы туда добраться, установить базу и провести все необходимые научные наблюдения и исследования:

«Некоторые зоны поверхности Тритона отражают свет, как будто сделаны из чего-то твердого и гладкого, как металл. Считается, что данные зоны содержат пыль, азотный газ и, возможно, воду, которая просачивается сквозь поверхность и мгновенно замерзает в результате невероятно низкой температуры».

Кроме того, ученые подсчитали, что Тритон образовался примерно в то же время и из того же материала, что и Нептун, что весьма странно, учитывая размер спутника. Похоже, он сформировался где-то в другом уголке Солнечной системы, а затем был притянут гравитацией Нептуна. Более того, спутник вращается в противоположную своей планете сторону. Тритон — единственный спутник Солнечной системы, который обладает такой особенностью.

Ганимед

В отношении крупнейшего спутника Юпитера, Ганимеда, как и других космических объектов в нашей Солнечной системе, были выражены подозрения в наличие воды под поверхностью. По сравнению с другими покрытыми льдом спутниками, поверхность Ганимеда принято считать относительно тонкой и легкой для бурения.

Кроме того, Ганимед является единственным спутником в Солнечной системе, обладающим собственным магнитным полем. Благодаря этому над его полярными областями можно очень часто наблюдать северные сияния. Помимо этого, есть подозрения, что под поверхностью Ганимеда может скрываться жидкий океан. Спутник обладает разряженной атмосферой, в состав которой входит кислород. И хотя его крайне мало для поддержания той жизни, которую мы знаем, потенциал для терраформирования у спутника имеется.

В 2012 году запланировало космическую миссию к Ганимеду, а также двум другим спутникам Юпитера — Каллисто и Европе. Запуск собираются осуществить в 2022 году. Добраться до Ганимеда удастся 10 годами позже. Хотя все три спутника представляют большой интерес для ученых, считается, что Ганимед содержит наибольшее число интересных науке особенностей и потенциально пригоден для колонизации.

Каллисто

Размером примерно с планету Меркурий, вторым по размеру спутником Юпитера является Каллисто — еще одна луна, в отношении которой выражены предположения о содержании воды под ледяной поверхностью. Кроме того, спутник рассматривается как подходящий кандидат для будущей колонизации.

Поверхность Каллисто в основном состоит из кратеров и ледяных полей. Атмосфера спутника представляет собой смесь углекислого газа. Ученые уже выдвигают предположения о том, что весьма разряженная атмосфера спутника пополняется углекислым газом, вырывающимся из-под поверхности. Ранее полученные данные указывали на возможность наличия кислорода в атмосфере, однако дальнейшие наблюдения эту информацию не подтвердили.

Так как Каллисто находится на безопасной дистанции от Юпитера, излучение от планеты будет относительно низким. А отсутствие геологической активности делает среду спутника более стабильной для потенциальных колонистов. Другими словами, построить колонию здесь можно и на поверхности, а не под ней, как во многих случаях с другими спутниками.

Луна

Вот мы и подобрались к первой потенциальной колонии, которую установит человечество за пределами своей планеты. Речь, конечно же, идет о нашей Луне. Многие ученые склонны считать, что колония на нашем естественном спутнике появится уже в ближайшее десятилетие и вскоре после этого Луна станет отправной точкой для более дальних космических миссий.

Крис Маккей, астробиолог NASA, является одним из тех, кто считает, что Луна является наиболее вероятным местом для первой космической колонии людей. Маккей уверен в том, что дальнейшее освоение Луны с космической миссией после «Аполлон-17» не продолжилось исключительно из соображения стоимости этой программы. Однако нынешние технологии, разработанные для использования на Земле, также могут быть очень экономически выгодными и для использования в космосе и существенно удешевят как стоимость самих запусков, так и строительство на поверхности Луны.

Несмотря на то, что сейчас самой большой миссией для NASA является высадка человека на Марсе, Маккей уверен, что осуществить этот план удастся не раньше того момента, как на Луне появится первая лунная база, которая станет отправной точкой для дальнейших миссий к Красной планете. Не только многие государства, но и многие частные компании проявляют интерес к колонизации Луны и даже готовят соответствующие планы.

Физические условия на Луне, как и на любом другом небесном теле, в значительной мере определяются ее массой и размерами. Сила тяжести на поверхности Луны в шесть раз меньше, чем на поверхности Земли, поэтому молекулам газа гораздо легче, чем на Земле, преодолеть силу тяжести и улететь в космическое пространство. Этим и объясняется отсутствие на нашем естественном спутнике атмосферы и гидросферы. Условия на поверхности тел планетного типа, к числу которых относится и Луна, определяется также потоком энергии, приходящим от Солнца (или из недр планеты). Отсутствие у Луны атмосферы и большая продолжительность дня и ночи (лунные сутки составляют около 99 земных суток) приводят к резким температурным колебаниям на ее поверхности: от +120°С в подсолнечной точке до -170°С в диаметрально противоположной. Речь, разумеется, идет о температуре вещества самой поверхности, так называемого реголита. Теплопроводность этого мелкораздробленного вещества крайне мала, поэтому-то лунная поверхность быстро нагревается и быстро остывает в течение лунных суток, а на глубине порядка метра суточные колебания температуры практически отсутствуют. Основной причиной дробления поверхностных пород Луны является падение на ее поверхность метеоритных и других, более мелких, тел из космического пространства. Из-за отсутствия атмосферы эти тела до удара о лунную поверхность сохраняют скорость порядка Десятов километров в секунду. Отсутствие газовой оболочки вокруг Луны обусловливает также особые механические свойства реголита: слипание отдельных частиц (из-за отсутствия у них оксидных пленок) в пористые скопления. Как описывают астронавты, побывавшие на Луне, и как показывают снимки следов луноходов, это вещество по своим физико-химическим свойствам (размер частиц, прочность и т. д.) похоже на мокрый песок. По своему рельефу лунная поверхность делится на два типа, что видно на карте Луны: материки, наблюдаемые с Земли как светлые области, и моря, видимые как более темные участки. Заметим, что в этих морях нет и капли воды.

Эти области отличаются, как мы теперь знаем, по внешнему виду, по геологической истории и по химическому составу. Наиболее типичной формой лунного рельефа являются кратеры самого различного размера. Диаметр самых крупных кратеров 200 км, а те кратеры-лунки, которые заметны на панорамах лунной поверхности, имеют в диаметре несколько сантиметров. Самые же мелкие кратеры видны на отдельных частицах лунного грунта (реголита) при их исследовании под микроскопом. Формы рельефа лунных морей более разнообразны. Здесь мы видим валы, растянувшиеся на сотни километров по их поверхности, некогда покрытой жидкой лавой, которая затопила древние кратеры. На окраинах морей, да и в других частях лунной поверхности заметны трещины, по которым происходит смещение коры. При этом иногда образуются горы сбросового типа. Складчатые горы, как типичные для нашей планеты, на Луне не встречаются. Все эти формы рельефа можно хорошо увидеть при наблюдениях Луны в телескоп. Хорошее представление о лунном пейзаже дают панорамы, составленные на основе документальных снимков. Обращают на себя внимание сглаженность очертаний, отсутствие остроконечных вершин, обрывистых склонов, бедность окраски ландшафта и наличие довольно большого числа камней и комьев.

Отсутствие на Луне процессов размывания и выветривания приводит к тому, что ее поверхность является своеобразным геологическим заповедником, где на протяжении миллионов и миллиардов лет сохраняются в неизвестном виде все возникшие за это время формы рельефа, иначе говоря, записана вся геологическая история Луны.

Это обстоятельство помогает в изучении геологического прошлого Земли, которое интересует нас сточки зрения поисков запасов полезных ископаемых, образовавшихся на нашей планете в те далекие эпохи, о которых в ее рельефе не сохранилось никаких следов. Советские автоматические станции «Луна» и американские экспедиции по программе «Аполлон» доставили на Луну приборы, предназначавшиеся для забора проб лунного грунта и доставки его на Землю, а также для проведения магнитометрических, сейсмологических, астрофизических и других исследований, как в местах посадки аппаратов, так и вдоль трассы передвижения луноходов. Фотографирование с космических аппаратов позволило получить материалы для составления полной карты Луны, включая и обратную, невидимую с Земли сторону. Сейсмические исследования выявили три типа лунотрясений.

Первый тип связан с падением на Луну метеоритов, второй - вызван падением осадков космических аппаратов или специально произведенными взрывами. Третий - это естественные лунотрясения, происходящие, как и на Земле, в сейсмически активных районах, находящихся вблизи разломов коры. Лунотрясения значительно слабее землетрясений, но благодаря высокой чувствительности установленных на Луне сейсмометров их удалось зарегистрировать в большом количестве, т. е. несколько сот. Детальные исследования распространения сейсмических волн позволили установить следующее: кора Луны толще, чем кора Земли (от 50 до 100 км); имеется ядро, которое находится в жидком виде (диаметр не более 400 км); имеется мантия - промежуточный слой между корой и ядром. В морских районах Луны поверхность покрыта породами типа земных океанических базальтов, а в материковых районах - более светлыми и более плотными породами. Основную часть этих пород составляет оксид кремния (что характерно и для Земли), за ним следуют оксиды железа, алюминия, магния, кальция и др. Минералогический состав лунных пород беднее, чем земных.

Отсутствуют минералы, образующиеся при наличии воды и кислорода. Эти факты говорят о том, что на Луне никогда не было ни заметной кислородной атмосферы, ни гидросферы. Органических соединений, микроорганизмов и других признаков жизни на Луне не обнаружено. Однако в лунных породах не обнаружено и таких соединений, которые были бы вредны для человека или животных и растений. В земных условиях семена и сеянцы растений, высаженных в почву, обогащенную порошкообразным лунным веществом, не испытывали никакого угнетающего воздействия и развивались нормально, усваивая те микроэлементы, которые содержались в этом веществе. Американские астронавты, имевшие в кабине корабля прямые контакты с лунным веществом во время последних экспедиций, даже не проходили никакого карантина, который в целях безопасности проводился после первых полетов на Луну. Исследования показали, что возраст отдельных образцов лунных пород достигает 4 - 4,2 млрд. лет, что гораздо больше возраста древнейших пород, обнаруженных на Земле.

планета земля космос луна