Грозы на юпитере. Планета юпитер краткое описание. Спутники планеты Юпитер

Юпитера вошёл зонд с КА «Галилей». На зонде были получены важные данные о струк-туре облачного слоя Юпитера и химическом составе его атмо-сферы. Атмосфера Юпитера в основном состоит из водорода и гелия. Причём гелия оказалось заметно меньше, чем в пер-вичном составе Солнца . Объясняется это тем, что гелий как более тяжёлый осаждается в нижние слои атмосферы. На до-лю остальных элементов остаётся только 1% по массе. Угле-рода и серы оказалось в 2—3 раза больше, чем в составе Солн-ца. Результаты «Галилея» показывают, что температура ядра у Юпитера, по-видимому, не менее 20 000 K.

Полосы

Европа

Уже первые снимки с «Вояджера» привлекли внима-ние к Европе — спутнику Юпитера. На Европе была обнаружена густая сеть пересекающихся линий. Более подробное изучение поверхно-сти Европы, проведённое, в частности, АМС «Галилей», пока-зало, что поверхность Европы представляет собой гигантский ледяной покров, разбитый многочисленными трещинами. Тол-щина покрова пока неизвестна. По разным оценкам, она со-ставляет от 10 до 20 км. Правда, в последнее время считает-ся, что толщина ледяного покрова существенно меньше.

Несколько лет назад было обнаружено, что в трещинах на-блюдается движение огромных ледяных глыб, что интерпре-тируется как признак наличия на Европе жидкой воды. На-личие жидкой воды является необходимым условием сущест-вования жизни . Однако никаких исследований, которые мог-ли бы подтвердить или опровергнуть это предположение, про-вести в настоящее время невозможно.

По своему составу атмосфера Юпитера близка к Солнцу, планету еще называют «несостоявшейся звездой», но её масса слишком мала для возникновения термоядерных реакций, обеспечивающих энергию светил.

Большая часть объема – 89% – приходится на водород, гелий составляет 10%, а последний процент поделили между собой водяной пар, метан, ацетилен, аммиак, сероводород и фосфор. Планета состоит из тех веществ, что и ее газовая оболочка – здесь не существует четкого разграничения поверхности и атмосферы. На определенном уровне, под действием колоссального давления, водород переходит в жидкое состояние и образует глобальный океан. При наблюдениях с Земли мы обозреваем только верхний слой атмосферы. Оранжевый оттенок ей придают соединения серы и фосфора. Вариации в насыщенности цвета облаков подтверждают различия в составе атмосферы.

Слои атмосферы

Разбивка атмосферных слоев происходит по показателям температуры и давления. На уровне поверхности, где давление равняется 1 бар, находится тропосфера. Именно здесь движущиеся потоки воздуха образуют зоны и пояса, температура держится на уровне -110 градусов по Цельсию.

С продвижением вверх, температурные показатели увеличиваются и в термосфере достигают 725 градусов, а давление падает. В этой зоне возникает яркое полярное сияние, заметное с Земли.

Циркуляция воздушных масс

Движение атмосферы Юпитера определяется двумя факторами: высокой скоростью вращения вокруг оси, которая составляет 10 часов, и восходящими потоками, возникающими при отдаче внутреннего тепла. Чередующиеся полосы зон и поясов выстраиваются параллельно экватору. Местные ветра изменяют скорость и направление с увеличением широты. На экваторе воздушные массы движутся со скоростью до 140 м/с и совершают суточный оборот на 5 минут быстрее, чем умеренные области. У полюсов ветра стихают.

Зоны возникают благодаря восходящим потокам. Здесь наблюдается увеличение давления, а светлую окраску облакам придают застывшие кристаллы аммиака. Температурные показания зон – ниже, а видимая поверхность – выше, чем у поясов, которые представляют собой нисходящие потоки. Темный цвет нижнего слоя облаков формируют коричневые кристаллы гидросульфида аммония. Движение во всех полосах устойчиво и не меняет свое направление. При соприкосновении зон и поясов возникает сильная турбулентность, рождающая мощные вихри.

Большое Красное Пятно (БКП)

На протяжении 300 лет астрономы наблюдают уникальное явление – ураган, превосходящий по размеру Землю. Окраинные зоны Большого Красного Пятна создают хаотичное завихрение облаков, но ближе к центру движение замедляется. Температура образования ниже, чем у других областей. Оно движется со скоростью 360 км/ч против часовой стрелки, полный оборот вокруг планеты совершает за 6 суток. За столетие границы антициклона уменьшились вдвое. Замечено БКП было в 1665 году Дж. Кассини, но момент его возникновения не установлен, так что возраст урагана может быть больше, чем принято считать.

Исследования

Первым аппаратом, который посетил Юпитер, стал «Пионер-10» в 1971 году. Он передал снимки планеты и спутников, измерил показатели магнитного поля. Аппаратура зонда обнаружила значительное излучение внутреннего тепла Юпитера. Полет «Вояджера — 1» дал несколько тысяч качественных снимков газового гиганта, сведения о верхних областях атмосферы.

Наибольший вклад в изучение Юпитера внесла миссия «Галилео», продолжавшаяся 8 лет. Спуск аппарата предоставил сведения о внутренних слоях атмосферы. Были найдены «сухие» области, где содержание воды меньше обычного в 100 раз, «горячие пятна», образованные тонким участком облаков, проведен анализ химических составляющих. Лучшие снимки планеты выполнил «Кассини», благодаря им составлена подробная карта.

Факты и тайны

Наблюдения за Юпитером ведутся с древних времен, но он по-прежнему полон загадок. Самая значительная по размерам планета Солнечной системы не зря получила имя верховного бога Рима. Ее масса в 2 раза больше, чем всех остальных планет, сложенных вместе. Газовый гигант вращается вокруг оси быстрее всех, имеет самое мощное магнитное поле, его грандиозный ураган БКП наблюдается с Земли, а молнии могут достигать 1000 км. Цвет и природа длительного антициклона не имеют объяснения, как и многие факты, известные о Юпитере.

Одной из постоянных тем дискуссий является возможность появления жизни в атмосфере планеты. Мощнейшие электрические разряды и умеренные температурные показатели могут способствовать формированию сложных органических соединений под плотным слоем облаков, но жидкое состояние поверхности и минимальное содержание воды исключают наличие известных жизненных форм.

Юпитер — самая большая планета . Диаметр планеты в 11 раз больше диаметра Земли и составляет 142 718 км.

Вокруг Юпитера находится тонкое кольцо, опоясывающее его. Плотность кольца очень мала, поэтому оно невидимо (как у Сатурна).

Период вращения Юпитера вокруг оси — 9 ч 55 мин. При этом каждая точка экватора движется со скоростью 45 000 км/ч.

Так как Юпитер — не твердый шар, а состоит из газа и жидкости, экваториальные его части вращаются быстрее, чем приполярные области. Ось вращения Юпитера почти перпендикулярна его орбите, следовательно, на планете смена времен года выражена слабо.

Масса Юпитера намного превышает массу всех других планет Солнечной системы, вместе взятых, и составляет 1,9 . 10 27 кг. При этом средняя плотность Юпитера составляет 0,24 средней плотности Земли.

Общие характеристики планеты Юпитер

Атмосфера Юпитера

Атмосфера Юпитера очень плотная. Она состоит из водорода (89 %) и гелия (11 %), напоминая по химическому составу Солнце (рис. 1). Ее протяженность 6000 км. Оранжевый цвет атмосфере
придают соединения фосфора или серы. Для людей она губительна, так как содержит ядовитые аммиак и ацетилен.

Разные части атмосферы планеты вращаются с разными скоростями. Такое различие породило пояса облаков, которых у Юпитера три: наверху — облака из оледеневшего аммиака; под ними — кристаллы сероводорода аммония и метана, а в самом нижнем слое — водяной лед и, возможно, жидкая вода. Температура верхних облаков составляет 130 °С. Кроме того, Юпитер имеет водородную и гелиевую короны. Ветры на Юпитере достигают скорости 500 км/ч.

Достопримечательностью Юпитера является Большое Красное Пятно, которое наблюдают уже 300 лет. Оно было открыто в 1664 г. английским естествоиспытателем Робертом Гуком (1635-1703). Сейчас его длина достигает 25 000 км, а 100 лет назад она была около 50 000 км. Это пятно впервые было описано в 1878 г., а зарисовано 300 лет назад. Оно как бы живет своей жизнью — то расширяется, то сжимается. Цвет его также меняется.

Американские зонды «Пионер-10» и «Пионер-11», «Вояджер-1» и «Вояджер-2», «Галилео» выяснили, что у пятна нет твердой поверхности, оно вращается, как циклон в атмосфере Земли. Предполагают, что Большое Красное Пятно — это атмосферное явление, вероятно, верхушка циклона, бушующего в атмосфере Юпитера. В атмосфере Юпитера обнаружено также белое пятно размером более 10 000 км.

На 1 марта 2009 г. у Юпитера известно 63 спутника. Самые крупные из них Но и Европа размером с Меркурий. Они всегда повернуты к Юпитеру одной стороной, как Луна к Земле. Эти спутники называют галилеевыми, так как их впервые открыл итальянский физик, механик и астроном Галилео Галилей (1564-1642) в 1610 г., испытывая свой телескоп. На Ио имеются действующие вулканы.

Рис. 1. Состав атмосферы Юпитера

Двадцать внешних спутников Юпитера настолько далеки от планеты, что невидимы с ее поверхности невооруженным глазом, а Юпитер в небе самого дальнего из них выглядит меньше Луны.

Изучение Юпитера

© Владимир Каланов,
сайт
"Знания-сила".

Атмосфера Юпитера

БКП и белый овал

Экваториальная зона

Атмосфера Юпитера состоит в основном из молекулярного водорода (76,1 % по массе) и гелия (23,8% по массе). В незначительном количестве присутствуют метан (0,21%), аммиак, инертные газы, а также кристаллики водяного льда. На поверхности Юпитера постоянно дуют сильные ветры. На Земле ветры со скоростью 150 м/с мы назвали бы ураганными, а для Юпитера такие ветры – нормальное явление. Установлено, что в северной полусфере Юпитера потоки атмосферного ветра достигают 600 км/ч (это 166 м/с ).

Чёткой границы между поверхностью и атмосферой на Юпитере, как и на других газообразных планетах, не существует. Для определения такой границы астрономы ввели понятие условной «нулевой высоты», на которой происходит смена градиента температуры на обратный, т.е. начинается обратный отсчет температуры. Для точного определения нулевой высоты на Юпитере его атмосфера ещё недостаточно изучена. За верхнюю границу атмосферы планеты взят уровень давления в 1 нбар. При измерении физических свойств атмосферы зондом Галилео использовалась точка отсчёта с давлением в 1 атмосферу.

По данным зонда Галилео скорость ветра сначала растёт с глубиной, а потом становится постоянной. На уровне давления 0,5 атм. скорость ветра составила 90 м/сек , достигла 170 м/сек на уровне 4 атм. и далее почти не менялась.

Скорость / направление зональных ветров на Юпитере в зависимости от широты

В экваториальной области Юпитера ветры дуют в прямом направлении, т.е. в направлении вращения планеты, со скоростью ок. 70-140 м/сек . Но уже на 15-18 градусах северной и южной широт направление потоков газа меняется на обратное, где достигает скорости 50-60 м/сек . В дальнейшем атмосферные течения прямого и обратного направления несколько раз сменяют друг друга, а скорость ветра в них уменьшается с увеличением широты. В приполярных широтах зональная скорость ветра близка к нулю.

Установлено, что в атмосфере Юпитера присутствуют три слоя облаков. Наверху расположены облака́ из оледеневшего аммиака, ниже – кристаллы сероводорода аммония и метана, а в самом нижнем слое – водяной лёд и, возможно, жидкая вода.

Атмосфера Юпитера отличается высокой электрической активностью. Грозы там гремят непрерывно. Молнии достигают длины 1000 км и даже больше. В атмосфере Земли молнии длиной 50 км являются большой редкостью.

Вспышки молний в атмосфере Юпитера. Снимок ночной стороны планеты.

По современным представлениям, наружный слой Юпитера толщиной в 0,15 радиуса планеты, т.е. около 10000 км состоит из газа (смесь водорода и гелия). За этим слоем находится слой жидкого молекулярного водорода (смесь жидкого водорода и гелия). Толщина этого слоя составляет около 0,75 радиуса планеты, т.е. около 54 тысяч км. температура жидкого водорода в этом слое достигает 2000°С. Далее, на глубине до 0,9 радиуса планеты (около 65 тысяч км ) водород находится в твёрдом металлическом состоянии с плотностью 11 (г/см³) и температурой 20000°С. Давление в этой зоне достигает 5 миллионов земных атмосфер.

Ядро Юпитера представляет собой твёрдое образование из железосиликатных и каменистых пород. Радиус ядра может составлять от 0,1 до 0,15 радиуса планеты, а его масса составляет около 4% общей массы Юпитера.

Под металлическим водородом понимается такое его агрегатное состояние, когда под давлением в несколько миллионов земных атмосфер электроны атомов водорода теряют связь с протонами и свободно перемещаются внутри окружающего вещества. Подобным образом ведут себя электроны в металлах.

Находясь на огромном расстоянии от Солнца, Юпитер получает в 27 раз меньше солнечного тепла, чем Земля. Измерения, выполненные с Земли и автоматическими зондами, показали, что энергия инфракрасного излучения Юпитера примерно в 1,5 раза превышает тепловую энергию, получаемую планетой от далёкого Солнца. Значит, Юпитер имеет внутренние запасы тепла. Считается, что эти запасы тепловой энергии являются остаточными с момента образования планеты. Гадать о том, каких значений может достигать температура в недрах Юпитера, не имеет смысла, хотя некоторые авторы и называют возможный уровень от 23000°C до 100000°C.

Поверхность Юпитера прогревается слабо из-за низкой теплопроводности веществ, составляющих внутренние слои планеты. Поэтому на поверхности Юпитера царит ужасный холод – до минус 150°C. В то же время действие внутреннего источника тепла на Юпитере проявляется в том, что в его атмосфере постоянно бушуют циклоны и антициклоны, беспрерывно дуют сильные ветры то с запада на восток, то с востока на запад. Для подобных проявлений атмосферной активности тепловой энергии, получаемой Юпитером от Солнца, было бы совершенно недостаточно. Это подтверждается метеорологическими расчётами.

Магнитное поле Юпитера

До 1979 года учёные не имели никаких данных о наличии или отсутствии магнитного поля у Юпитера. Из научной информации, полученной в марте 1979 года от автоматической межпланетной станции «Вояджер-1» , а позднее и от АМС «Одиссей» , стало ясно, что Юпитер обладает сильнейшим магнитным полем. По некоторым оценкам, напряженность магнитного поля на Юпитере почти в 50 раз выше, чем на Земле. Магнитная ось наклонена на 10,2 ± 0,6° по отношению к оси вращения Юпитера. Магнитные полюса́ Юпитера инвертированы по отношению к полюсам планеты. Поэтому стрелка ко́мпаса на Юпитере своим северным концом показала бы на юг. Предполагается, что магнитное поле на Юпитере генерирует хорошо проводящий электрический ток металлический водород вследствие быстрого вращения планеты.

Смелость такого предположения заключается в том, что на Земле никто и никогда не видел металлический водород и, соответственно, никто не изучал свойства этого, в общем-то гипотетического, вещества. Но в данном случае фантазия учёных совпадает с реальностью: ведь магнитное поле Юпитера существует реально.

Магнитное поле Юпитера простирается на огромное расстояние от планеты, не менее ста юпитерианских радиусов, т.е. достигает Сатурна. Если бы магнитосферу Юпитера можно было видеть с поверхности Земли, то её угловые размеры превышали бы размеры полной Луны, видимой с Земли.

Магнитное поле Юпитера создаёт вокруг планеты мощные радиационные пояса, т.е. области, заполненные заряженными частицами. Радиационные пояса Юпитера по интенсивности излучения в 40 тысяч раз превышают радиационные пояса Земли.

Модель магнитосферы Юпитера

Наличие в магнитосфере Юпитера заря́женных частиц служит причиной полярных сияний, которые возникают в атмосфере высоких широт обоих полушарий планеты. Полярные сияния на Юпитере очень интенсивны, их можно наблюдать даже с Земли.

В то же время вокруг Юпитера установлено наличие плазменного кольца, т.е. зоны, где заря́женные частицы отсутствуют. Существование плазмы объясняется возможной ионизацией под действием солнечной радиации выбросов вулканов, действующих на спутнике Ио.

Ко́льца Юпитера

В 1979 году зонды «Вояджер-1» и «Вояджер-2» открыли ко́льца, окружающие Юпитер. Система этих колец состоит из двух наружных и одного внутреннего. Ко́льца расположены в экваториальной плоскости Юпитера и находятся на расстоянии 55000 км от верхнего слоя атмосферы. Ко́льца представляют собой мелкие каменистые фрагменты, пыль и кусочки льда, вращающиеся вокруг планеты. Отражающая способность основной массы вещества колец низкая, поэтому заметить ко́льца с Земли чрезвычайно трудно. В этом состоит отличие колец Юпитера от колец другого газообразного гиганта – Сатурна, которые хорошо отражают солнечный свет и доступны наблюдению. Самая яркая и заметная часть юпитерианских колец составляет около 6400 км в ширину (точнее – в глубину) и до 30 км в толщину. С точки зрения небесной механики кольца Юпитера – это сотни тысяч мелких и мельчайших спутников, вращающихся вокруг этой планеты. Но астрономическая наука, конечно, не рассматривает в качестве спутников каменную мелочь, кусочки льда и прочий космический мусор, вращающийся вокруг каждой планеты.

© Владимир Каланов,
"Знания-сила"

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

Самое близкое расстояние от Юпитера до Земли - 630 млн. км. Масса Юпитера более чем в 300 раз больше массы Земли.

Полный оборот Юпитера вокруг оси - 9h55m.

На поверхности видны разноцветные полосы, структура которых постоянно трансформируется, но общий характер сохраняется.

Линейная скорость перемещения поверхностных облачных масс на экваторе - 40 000 км/ч.

Ось магнитного поля Юпитера наклонена на 10 градусов к оси вращения. Магнитное поле вращается равномерно, с периодом 9часов 55 мин. Это указывыает на почти твёрдый характер вращения планеты под слоем облаков.

Сила тяжести на поверхности в 2,6 раза больше земной.

Средняя плотность Юпитера - 1,34 г/см 3 . Это свидетельствует о том, что планета состоит в основном из лёгких газов, главным образом - водорода и гелия.

Юпитер имеет протяжённую атмосферу. Интересным её объектом является Большое Красное пятно, открытое в 1665 году Кассини.

Протяжённость пятна от 15 000 до 50 000 км. Временами оно становится ярче, временами почти пропадает.

Пятно постоянно дрейфует в атмосфере планеты. В первые годы после открытия оно было очень ярким, с тех пор яркость постепенно падает. Вероятно, пятно со временем затухает. Исследования Галилео показали, что пятно лежит выше и более холодное, чем окружающие облака. Подобные структуры замечены на Сатурне и Нептуне, но остаётся непонятно, как они могут существовать столь долгое время.

Юпитер имеет такой большой диаметр, какой только может иметь газовая планета. Если бы ему добавили ещё массу, он бы увеличился ненамного в размерах.

Для того, чтобы стать звездой, Юпитеру понадобилось в 80 раз больше массы, чем он имеет.

Атмосфера Юпитера состоит в основном из водорода (90%) и гелия (10%). Обнаружены также аммиак (0,01%) и метан (0,07%), вода, окись углерода, фосфин, циан, этан, ацетилен. Остальных элементов очень мало. Вода вымерзла, сохранившись в газообразном состоянии в малых количествах.

Температура в атмосфере с высотой быстро падает. От -113 0 С при давлении 1 атм. до -160 0 С при давлении 0,03 атм.

Генерация тепла в недрах Юпитера и его собственное тепловое излучение превышает в 2 раза поток энергии, поступающий от Солнца.

На Юпитере отсутствует твёрдая поверхность и какой-то рельеф. Тепло из недр выносится путём вертикальной конвекции, порождающей турбулёнтные вихри.

В экваториальной зоне (от +9 0 до -9 0) течения направлены строго с запада на восток. Дуют западные ветры со скоростью 100 м/с. Вблизи широт от +20 0 до -20 0 ветры дуют с востока на запад со скоростью около 50 м/с. Между основными течениями существуют вихри и струи.

Исследования «Галилео» показали, что ветры в атмосфере могут значительно превышать 100 м/с и вызываются внутренним источником тепла. Ветры носят более характер реактивных струй, чем вихрей и торнадо.

Большое Красное пятно увлекается на запад вместе с южной тропической зоной. Оно не связано с глубокими слоями планеты. В нём наблюдается подъём вещества из верхних областей и растекание его от центра. Этим объясняется низкая температура пятна и антициклоническое вращение в нём, т.е. против часовой стрелки в южном полушарии с периодом около 7 суток.

Помимо Красного пятна наблюдаются белые овалы, которые представляют собой такие-же возмущения, но появились позже, в 1939 году, и в настоящее время сжимаются.

Облака атмосферы состоят в основном из аммиака. Температура от -100 0 до

160 0 С. При давлении 1 атм. аммиак кипит при -33 0 С и плавится при -78 0 С. Метан кипит при -161 0 С и плавится при -184 0 С, поэтому существование его в жидком или кристаллическом виде невозможно.

Атмосфера Юпитера очень глубокая и, возможно, включает целую планету.

На большой глубине внутри Юпитера, давление настолько большое, что атомы водорода разрушаются и электроны освобождаются. Возникающие в результате этого атомы состоят из пустых протонов. Это состояние называется металлическим водородом. Температура в ядре достигает 30 000 К, а давление больше 1 млн. бар. Высокая температура ядра существует благодаря механизму Келвина – Гельмгольца, т.е. из-за медленного гравитационного сжатия планеты.

В полярных облаках Юпитера наблюдается явление, подобное земному северному сиянию. Эти явления связаны с веществом, падающим из спутника Ио по спиральным линиям магнитного поля в атмосферу Юпитера.

Облака простираются в интервале высот 12 км. Атмосфера Юпитера окрашена различными цветами. Устойчивые атмосферные составляющие не могут так окрашивать атмосферу, они бы стремились постепенно выравнять окраску. Значит из глубины постоянно поступают окрашенные металлические соединения, которые затем либо оседают, либо подвергаются химическим реакциям в атмосфере. Р. Вилд считает, что окраска Юпитера обусловлена натрием, а Г. Юри связывает окраску облаков с органическими молекулами. К. Саган и С. Миллер, пропуская через смесь газов, моделирующую атмосферу Юпитера, искровые разряды, получили ярко окрашенные органические молекулы. Космические аппараты “Вояджер-1 и 2” зарегистрировали мощные вспышки молний на Юпитере, сравнимые с сильнейшими грозовыми разрядами на Земле. Однако, никакой зависимости между молниями и цветом пока не найдено.

Исследования «Галилео» показали, что молнии на Юпитере вспыхивают в 10 раз реже, чем на Земле. Органических молекул почти не обнаружено. Химический состав Юпитера близок к протопланетному облаку.

Юпитер является полупериодическим радиоисточником. К. Шайн из Австралии открыл, что радиоизлучение Юпитера должно быть связано с определёнными районами поверхности планеты. Источники на поверхности вращаются с периодом 9ч. 55 мин. 30 сек. Энергия всплесков радиоизлучения Юпитера соответствует энергии миллиарда одновременных вспышек молний на Земле.

Радиоизлучение может быть связано с внутренней частью магнитосферы и движением спутника Ио.

Юпитер обладает огромным магнитным полем. Его магнитосфера простирается на расстояние 650 миллионов км (дальше орбиты Сатурна!). Галилео обнаружил, что окружающая среда около Юпитера содержит высоко энергичные частицы, пойманные магнитным полем. Эта "радиация" подобна, но намного более интенсивна чем в радиационных поясах Ван Аллена около Земли. Атмосферные исследования Галилео обнаружили новый интенсивный лучевой пояс между кольцом Юпитера и высшими атмосферными слоями. Этот новый пояс - приблизительно в 10 раз более сильный, чем пояса радиации Ван Аллена. В этом новом поясе были найдены высокоэнергичные ионы гелия неизвестного происхождения.

Головная ударная волна солнечного ветра на дневной стороне находится на расстоянии 100 радиусов Юпитера или 0,05 а.е.

Внутреннее строение Юпитера до конца неизвестно. Скорее всего его недра находятся в жидком состоянии, за исключением небольшого каменного ядра. Жидкий водород на глубине 25 000 км металлизируется. Выше этой границы расположена зона молекулярного водорода, ниже металлического.

Столкновение с кометой - В 1994 году на Юпитер упали осколки кометы Шумейкера - Леви. Явление наблюдалось с Земли и космическим телескопом им. Хаббла. После падения кометы Шумейкера - Леви, на широте падения осколков образовался широкий пояс, в котором температура на 5 - 7 К ниже чем обычно.

Причины могут быть следующие:

Охлаждение через эффективное инфракрасное излучение молекул аммиака, синильной кислоты, воды и других веществ, выброшенных в атмосферу во время катастрофы.

Обычное термическое охлаждение дыма, образовавшегося в стратосфере

при столкновении и переизлучение им солнечного света обратно в космос.

14.2 Спутники и кольцо Юпитера .

Кольцо. “Вояджер-1” в 1979 году открыл у Юпитера кольцо. Внешний край кольца находится у орбиты самого малого 14 спутника, а внутренний - на расстоянии 5500 км от видимой границы облаков. Ширина наиболее яркой части кольца достигает 800 км. Толщина до 1 км. Кольцо Юпитера сильно отличается от кольца Сатурна. Оно состоит из очень маленьких частиц. Составлено из частиц пыли меньше чем 10 микронов в диаметре.

Происхождение кольца вероятно связано с бомбардировкой микрометеоритами маленьких спутников Юпитера, расположенных внутри кольца.

Возможно, что оно постоянно пополняется за счёт частиц космической пыли.

Кольца Юпитера и его спутники существуют внутри интенсивного лучевого пояса электронов и ионов, которые улавливаются магнитным полем планеты.

Спутники . Первые четыре спутника Юпитера были открыты Галилеем в 1610 году. Сейчас известно уже более 60-ти.

Орбиты шести внутренних спутников почти круговые и располагаются в экваториальной плоскости планеты. Каждая последующая орбита лежит в 1,7 раза дальше предыдущей. Восемь внешних спутников очень маленькие. Их орбиты образуют две группы по четыре спутника. Первая группа располагается на расстоянии 12 млн. км. от Юпитера, движутся они в прямом направлении. Спутники второй группы находятся вдвое дальше, движение их по орбитам обратное. Это спасает их от притяжения Солнца, которое может действовать на них с силой вдвое большей чем у Юпитера, всследствие большой удалённости спутников (0,2 а.е.). Орбиты этих спутников сильно вытянуты (е = 0,4), наклонены к орбите Юпитера под углом 30 0 и постоянно меняются из-за солнечных возмущений.

Три внутренних спутника Ио, Европа, Ганимед движутся почти в полном резонансе с периодами обращения 1.77, 3.55, 7.16 земных суток, находящимися в соотношении 1:2:4. В небесной механике такое расположение считается устойчивым. Все внутренние спутники обращены к Юпитеру одной и той же стороной.

Ио . Радиус 1815 км. Ещё до полётов “Вояджеров” учёные предсказали, что спутник Ио очень сильно нагревается вследствие приливных эффектов. Нагрев Ио должен быть в 20 раз больше чем Европы и превосходить в 10 раз нагрев Луны вследствие распада радиоактивных элементов. Предполагалось, что внутри Ио должна быть большая расплавленная область. Эти предположения сразу же подтвердились. “Вояджер-1” открыл на Ио 8 действующих вулканов. Вулканические выбросы поднимаются на высоту 7- - 280 км. над поверхностью, что требует скорости выброса 1 км/с. Выбросы состоят из двуокиси серы SO 2 .

Образование вулканов связано с расплавлением силикатных масс в недрах Ио, содержащих небольшое железное ядро. Это подтверждается средней плотностью Ио - 3,5 г/см 3 . Под видимой корой лежит неоднородный подкорковый силикатный слой, который в очень немногих областях малой протяжённости выходит на поверхность в виде гор высотой до 10 км. Под верхним слоем твёрдой серы, смешанной с SO 2 лежит океан расплавленной серы (t = 120 0 С, давление 40 бар). Потоки в расплавленных недрах Ио, так же как и в Земле, создают тепловые очаги, в которых образуются вулканы. Интенсивные красный, оранжевый, жёлтый, коричневый, чёрный и белый цвета на Ио подтверждают эти представления. Ударные кратеры с поперечником более 600 м не обнаружены, значит, скорость отложений на поверхности должна превышать 0,1 мм/год и определяться выбросами, потоками, поверхностной эррозией, связанной с вулканической активностью.

Возраст свежих разноцветных потоков меньше 1000 лет.

Европа. Радиус 1569 км. Поверхность Европы покрыта лабиринтом запутанных тонких линий и полос, похожих на марсианские “каналы”. Длина некоторых достигает тысяч километров, ширина 20-40 км. Скорее всего это чем-то заполненные трещины. Самые высокие детали возвышаются на высоту всего 40 м. Она напоминает исцарапанный оранжевый шар. Почти полное отсутствие ударных кратеров говорит о том, что их следы сразу же исчезают. Внешняя кора скорее всего ледяная до глубин 100 км. Средняя температура поверхности около -150 0 С. Недра спутника должны быть горячими, химический состав похожий на Ио. Плотность несколько меньше чем у Ио - 3,0 г/см 3 вызвана наличием ледяной коры. Множество трещин - результат снятия напряжений, возникающих под поверхностью.

Недавние наблюдения с помощью космического телескопа им. Хаббла позволили обнаружить на Европе разреженную атмосферу, состоящую из молекулярного кислорода. Её плотность очень мала. Солнечный свет, космические лучи и микрометеориты выбивают с поверхности Европы молекулы воды, которые под действием ультрафиолетового излучения распадаются на атомы водорода и кислорода. Атомы водорода сразу же покидают атмосферу, а атомы кислорода объединяются в энергетически более выгодные молекулы.

Ганимед . Самый крупный и массивный из всех спутников. Радиус 2631 км. Средняя плотность 1,9 г/см 3 . Он почти на половину состоит из воды или льда. Средняя температура поверхности - 130 0 С. Тёмные области Ганимеда усеяны кратерами диаметром в несколько десятков километров.

На спутнике существует огромная система хребтов. Самым интересным объектом поверхности являются пучки длинных параллельных борозд. Они покрывают значительную часть площади спутника. Эти образования современной наукой не объяснены.

Каллисто . По размерам это третий спутник в солнечной системе. Радиус 2410 км. Но плотность самая маленькая 1,8 г/см 3 . Поверхность Каллисто на невидимой с Юпитера стороне очень насыщена кратерами. На обращённой к Юпитеру стороне видна огромная многокольцевая структура с яркой центральной областью поперечником около 300 км. От 8 до 10 кольцевых гребней окружают центр до расстояния примерно 1500 км. В центральной области Каллисто кратеров гораздо меньше, чем на остальной поверхности. Значит эта область моложе.

Парадоксально то, что при малой плотности Каллисто должна содержать больше воды, чем Ганимед, но при этом сохраняет древние ударные кратеры. Низкое альбедо Каллисто говорит о примеси в коре пыли. Температура поверхности -120 0 С или выше. Эта температура всё же низка, чтобы образовать атмосферу из водяного пара.