Как называется график функции y sinx. Функция y=sinx, ее основные свойства и график. График функции синус, y = sin x

Как построить график функции y=sin x? Для начала рассмотрим график синуса на промежутке .

Единичный отрезок берём длиной 2 клеточки тетради. На оси Oy отмечаем единицу.

Для удобства число π/2 округляем до 1,5 (а не до 1,6, как требуется по правилам округления). В этом случае отрезку длиной π/2 соответствуют 3 клеточки.

На оси Ox отмечаем не единичные отрезки, а отрезки длиной π/2 (через каждые 3 клеточки). Соответственно, отрезку длиной π соответствует 6 клеточек, отрезку длиной π/6 — 1 клеточка.

При таком выборе единичного отрезка график, изображённый на листе тетради в клеточку, максимально соответствует графику функции y=sin x.

Составим таблицу значений синуса на промежутке :

Полученные точки отметим на координатной плоскости:

Так как y=sin x — нечётная функция, график синуса симметричен относительно начала отсчёта — точки O(0;0). С учётом этого факта продолжим построение графика влево, то точки -π:

Функция y=sin x — периодическая с периодом T=2π. Поэтому график функции, взятый на на промежутке [-π;π], повторяется бесконечное число раз вправо и влево.

, Конкурс «Презентация к уроку»

Презентация к уроку












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Железо ржавеет, не находя себе применения,
стоячая вода гниет или на холоде замерзает,
а ум человека, не находя себе применения, чахнет.
Леонардо да Винчи

Используемые технологии: проблемного обучения, критического мышления, коммуникативного общения.

Цели:

  • Развитие познавательного интереса к обучению.
  • Изучение свойств функции у = sin x.
  • Формирование практических навыков построения графика функции у = sin x на основе изученного теоретического материала.

Задачи:

1. Использовать имеющийся потенциал знаний о свойствах функции у = sin x в конкретных ситуациях.

2. Применять осознанное установление связей между аналитической и геометрической моделями функции у = sin x.

Развивать инициативу, определенную готовность и интерес к поиску решения; умение принимать решения, не останавливаться на достигнутом, отстаивать свою точку зрения.

Воспитывать у учащихся познавательную активность, чувство ответственности, уважения друг к другу, взаимопонимания, взаимоподдержки, уверенности в себе; культуру общения.

Ход урока

1 этап. Актуализация опорных знаний, мотивация изучения нового материала

"Вход в урок".

На доске написаны 3 утверждения:

  1. Тригонометрическое уравнение sin t = a всегда имеет решения.
  2. График нечетной функции можно построить с помощью преобразования симметрии относительно оси Оу.
  3. График тригонометрической функции можно построить, используя одну главную полуволну.

Учащиеся обсуждают в парах: верны ли утверждения? (1 минута). Затем результаты первоначального обсуждения (да, нет) вносятся в таблицу в столбец "До".

Учитель ставит цели и задачи урока.

2. Актуализация знаний (фронтально на модели тригонометрического круга ).

Мы уже познакомились с функцией s = sin t.

1) Какие значения может принимать переменная t. Какова область определения этой функции?

2) В каком промежутке заключены значения выражения sin t. Найти наибольшее и наименьшее значения функции s = sin t.

3) Решите уравнение sin t = 0.

4) Что происходит с ординатой точки при ее движении по первой четверти? (ордината увеличивается). Что происходит с ординатой точки при ее движении по второй четверти? (ордината постепенно уменьшается). Как это связано с монотонностью функции? (функция s = sin t возрастает на отрезке и убывает на отрезке ).

5) Запишем функцию s = sin t в привычном для нас виде у = sin x (строить будем в привычной системе координат хОу) и составим таблицу значений этой функции.

х 0
у 0 1 0

2 этап. Восприятие, осмысление, первичное закрепление, непроизвольное запоминание

4 этап. Первичная систематизация знаний и способов деятельности, их перенос и применение в новых ситуациях

6. № 10.18 (б,в)

5 этап. Итоговый контроль, коррекция, оценка и самооценка

7. Возвращаемся к утверждениям (начало урока), обсуждаем, используя свойства тригонометрической функции у = sin x, и заполняем в таблице столбец "После".

8. Д/з: п.10, №№ 10.7(а), 10.8(б), 10.11(б), 10.16(а)

С центром в точке A .
α - угол, выраженный в радианах.

Определение
Синус (sin α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AC|.

Косинус (cos α) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине гипотенузы |AC|.

Принятые обозначения

;
;
.

;
;
.

График функции синус, y = sin x

График функции косинус, y = cos x


Свойства синуса и косинуса

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2 π .

Четность

Функция синус - нечетная. Функция косинус - четная.

Область определения и значений, экстремумы, возрастание, убывание

Функции синус и косинус непрерывны на своей области определения, то есть для всех x (см. доказательство непрерывности). Их основные свойства представлены в таблице (n - целое).

y = sin x y = cos x
Область определения и непрерывность - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений -1 ≤ y ≤ 1 -1 ≤ y ≤ 1
Возрастание
Убывание
Максимумы, y = 1
Минимумы, y = -1
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы

Сумма квадратов синуса и косинуса

Формулы синуса и косинуса от суммы и разности



;
;

Формулы произведения синусов и косинусов

Формулы суммы и разности

Выражение синуса через косинус

;
;
;
.

Выражение косинуса через синус

;
;
;
.

Выражение через тангенс

; .

При , имеем:
; .

При :
; .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.

Выражения через комплексные переменные


;

Формула Эйлера

Выражения через гиперболические функции

;
;

Производные

; . Вывод формул > > >

Производные n-го порядка:
{ -∞ < x < +∞ }

Секанс, косеканс

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус , соответственно.

Арксинус, arcsin

Арккосинус, arccos

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Функция y = sin x

Графиком функции является синусоида.

Полную неповторяющуюся часть синусоиды называют волной синусоиды.

Половину волны синусоиды называют полуволной синусоиды (или аркой).


Свойства функции
y = sin x :

3) Это нечетная функция.

4) Это непрерывная функция.


- с осью абсцисс: (πn; 0),
- с осью ординат: (0; 0).

6) На отрезке [-π/2; π/2] функция возрастает, на отрезке [π/2; 3π/2] – убывает.

7) На промежутках функция принимает положительные значения.
На промежутках [-π + 2πn; 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания функции: [-π/2 + 2πn; π/2 + 2πn].
Промежутки убывания функции: [π/2 + 2πn; 3π/2 + 2πn].

9) Точки минимума функции: -π/2 + 2πn.
Точки максимума функции: π/2 + 2πn


наибольшее значение 1.

Для построения графика функции y = sin x удобно применять следующие масштабы:

На листе в клетку за единицу отрезка примем длину в две клетки.

На оси x отмерим длину π. При этом для удобства 3,14 представим в виде 3 – то есть без дроби. Тогда на листе в клетку π составит 6 клеток (трижды по 2 клетки). А каждая клетка получит свое закономерное имя (от первой до шестой): π/6, π/3, π/2, 2π/3, 5π/6, π. Это значения x .

На оси y отметим 1, включающий две клетки.

Составим таблицу значений функции, применяя наши значения x :

√3
-
2

√3
-
2

Далее составим график. Получится полуволна, наивысшая точка которой (π/2; 1). Это график функции y = sin x на отрезке . Добавим к построенному графику симметричную полуволну (симметричную относительно начала координат, то есть на отрезке -π). Гребень этой полуволны – под осью x с координатами (-1; -1). В результате получится волна. Это график функции y = sin x на отрезке [-π; π].

Можно продолжить волну, построив ее и на отрезке [π; 3π], [π; 5π], [π; 7π] и т.д. На всех этих отрезках график функции будет выглядеть так же, как на отрезке [-π; π]. Получится непрерывная волнистая линия с одинаковыми волнами.

Функция y = cos x .

Графиком функции является синусоида (ее иногда называют косинусоидой).



Свойства функции y = cos x :

1) Область определения функции – множество действительных чисел.

2) Область значений функции – отрезок [–1; 1]

3) Это четная функция.

4) Это непрерывная функция.

5) Координаты точек пересечения графика:
- с осью абсцисс: (π/2 + πn; 0),
- с осью ординат: (0;1).

6) На отрезке функция убывает, на отрезке [π; 2π] – возрастает.

7) На промежутках [-π/2 + 2πn; π/2 + 2πn] функция принимает положительные значения.
На промежутках [π/2 + 2πn; 3π/2 + 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания: [-π + 2πn; 2πn].
Промежутки убывания: ;

9) Точки минимума функции: π + 2πn.
Точки максимума функции: 2πn.

10) Функция ограничена сверху и снизу. Наименьшее значение функции –1,
наибольшее значение 1.

11) Это периодическая функция с периодом 2π (Т = 2π)

Функция y = mf (x ).

Возьмем предыдущую функцию y = cos x . Как вы уже знаете, ее графиком является синусоида. Если мы умножим косинус этой функции на определенное число m, то волна растянется от оси x (либо сожмется, в зависимости от величины m).
Эта новая волна и будет графиком функции y = mf(x), где m – любое действительное число.

Таким образом, функция y = mf(x) – это привычная нам функция y = f(x), умноженная на m.

Если m < 1, то синусоида сжимается к оси x на коэффициент m. Если m > 1, то синусоида растягивается от оси x на коэффициент m.

Выполняя растяжение или сжатие, можно сначала построить лишь одну полуволну синусоиды, а затем уже достроить весь график.

Функция y = f (kx ).

Если функция y = mf (x ) приводит к растяжению синусоиды от оси x либо сжатию к оси x , то функция y = f(kx) приводит к растяжению от оси y либо сжатию к оси y .

Причем k – любое действительное число.

При 0 < k < 1 синусоида растягивается от оси y на коэффициент k. Если k > 1, то синусоида сжимается к оси y на коэффициент k.

Составляя график этой функции, можно сначала построить одну полуволну синусоиды, а по ней достроить затем весь график.

Функция y = tg x .

Графиком функции y = tg x является тангенсоида.

Достаточно построить часть графика на промежутке от 0 до π/2, а затем можно симметрично продолжить ее на промежутке от 0 до 3π/2.


Свойства функции y = tg x :

Функция y = ctg x

Графиком функции y = ctg x также является тангенсоида (ее иногда называют котангенсоидой).



Свойства функции y = ctg x :

Мы выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х ) полностью определяется ее поведением в интервале 0 < х < π / 2 .

Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.

Составим следующую таблицу значений нашей функции;

Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисунке

Полученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х .

1.Первую четверть окружности радиуса 1 разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы соответствующих углов.

2.Первая четверть окружности соответствует углам от 0 до π / 2 . Поэтому на оси х возьмем отрезок и разделим его на 8 равных частей.

3.Проведем прямые, параллельные оси х , а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.

4.Точки пересечения соединим плавной линией.

Теперь обратимся к интервалу π / 2 < х < π .
Каждое значение аргумента х из этого интервала можно представить в виде

x = π / 2 + φ

где 0 < φ < π / 2 . По формулам приведения

sin ( π / 2 + φ ) = соsφ = sin ( π / 2 - φ ).

Точки оси х с абциссами π / 2 + φ и π / 2 - φ симметричны друг другу относительно точки оси х с абсциссой π / 2 , и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [ π / 2 , π ] путем простого симметричного отображения графика этой функции в интервале относительно прямой х = π / 2 .

Теперь, используя свойство нечетности функции у = sin х,

sin (- х ) = - sin х ,

легко построить график этой функции в интервале [- π , 0].

Функция у = sin х периодична с периодом 2π ;. Поэтому для построения всего графика этой функции достаточно кривую, изображенную на рисунке, продолжить влево и вправо периодически с периодом .

Полученная в результате этого кривая называется синусоидой . Она и представляет собой график функции у = sin х.

Рисунок хорошо иллюстрирует все те свойства функции у = sin х , которые раньше были доказаны нами. Напомним эти свойства.

1) Функция у = sin х определена для всех значений х , так что областью ее определения является совокупность всех действительных чисел.

2) Функция у = sin х ограничена. Все значения, которые она принимает, заключены в интервале от -1 до 1, включая эти два числа. Следовательно, область изменения этой функции определяется неравенством -1< у < 1. При х = π / 2 + 2kπ функция принимает наибольшие значения, равные 1, а при х = - π / 2 + 2kπ - наименьшие значения, равные - 1.

3) Функция у = sin х является нечетной (синусоида симметрична относительно начала координат).

4) Функция у = sin х периодична с периодом 2π .

5) В интервалах 2nπ < x < π + 2nπ (n - любое целое число) она положительна, а в интервалах π + 2kπ < х < 2π + 2kπ (k - любое целое число) она отрицательна. При х = kπ функция обращается в нуль. Поэтому эти значения аргумента х (0; ±π ; ±2π ; ...) называются нулями функции у = sin x

6) В интервалах - π / 2 + 2nπ < х < π / 2 + 2nπ функция у = sin x монотонно возрастает, а в интервалах π / 2 + 2kπ < х < 3π / 2 + 2kπ она монотонно убывает.

Cледует особо обратить внимание на поведение функции у = sin x вблизи точки х = 0 .

Например, sin 0,012 0,012; sin (-0,05) -0,05;

sin 2° = sin π 2 / 180 = sin π / 90 0,03 0,03.

Вместе с тем следует отметить, что при любых значениях х

| sin x | < | x | . (1)

Действительно, пусть радиус окружности, представленной на рисунке, равен 1,
a / AОВ = х .

Тогда sin x = АС. Но АС < АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол х . Длина этой дуги равна, очевидно, х , так как радиус окружности равен 1. Итак, при 0 < х < π / 2

sin х < х.

Отсюда в силу нечетности функции у = sin x легко показать, что при - π / 2 < х < 0

| sin x | < | x | .

Наконец, при x = 0

| sin x | = | x |.

Таким образом, для | х | < π / 2 неравенство (1) доказано. На самом же деле это неравенство верно и при | x | > π / 2 в силу того, что | sin х | < 1, а π / 2 > 1

Упражнения

1.По графику функции у = sin x определить: a) sin 2; б) sin 4; в) sin (-3).

2.По графику функции у = sin x определить, какое число из интервала
[ - π / 2 , π / 2 ] имеет синус, равный: а) 0,6; б) -0,8.

3. По графику функции у = sin x определить, какие числа имеют синус,
равный 1 / 2 .

4. Найти приближенно (без использования таблиц): a) sin 1°; б) sin 0,03;
в) sin (-0,015); г) sin (-2°30").